Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132932 views
License: OTHER
1
% This file was created with JabRef 2.10.
2
% Encoding: UTF-8
3
4
@IEEEtranBSTCTL{IEEEexample:BSTcontrol,
5
CTLuse_forced_etal = "yes",
6
CTLmax_names_forced_etal = "3",
7
CTLnames_show_etal = "2" }
8
9
10
@Article{abadi2016tensorflow,
11
Title = {Tensorflow: {Large-scale} machine learning on heterogeneous distributed systems},
12
Author = {Abadi, Mart{\'\i}n and Agarwal, Ashish and Barham, Paul and Brevdo, Eugene and Chen, Zhifeng and Citro, Craig and Corrado, Greg S and Davis, Andy and Dean, Jeffrey and Devin, Matthieu and others},
13
Journal = {arXiv preprint arXiv:1603.04467},
14
Year = {2016},
15
16
Month = mar,
17
18
Url = {https://arxiv.org/abs/1603.04467}
19
}
20
21
@Misc{AlexanderMordvintsev2015,
22
Title = {Inceptionism: {Going} Deeper into Neural Networks},
23
24
Author = {Alexander Mordvintsev, Christopher Olah, Mike Tyka},
25
Month = jun,
26
Year = {2015},
27
28
Url = {https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html}
29
}
30
31
@InCollection{andrychowicz2016learning,
32
Title = {Learning to learn by gradient descent by gradient descent},
33
Author = {Andrychowicz, Marcin and Denil, Misha and G\'{o}mez, Sergio and Hoffman, Matthew W and Pfau, David and Schaul, Tom and de Freitas, Nando},
34
Booktitle = {Advances in Neural Information Processing Systems 29 (NIPS)},
35
Publisher = {Curran Associates, Inc.},
36
Year = {2016},
37
Editor = {D. D. Lee and M. Sugiyama and U. V. Luxburg and I. Guyon and R. Garnett},
38
Month = mar,
39
Pages = {3981--3989},
40
41
Url = {http://papers.nips.cc/paper/6461-learning-to-learn-by-gradient-descent-by-gradient-descent.pdf}
42
}
43
44
@InProceedings{ankerst1999optics,
45
Title = {{OPTICS}: {Ordering} points to identify the clustering structure},
46
Author = {Ankerst, Mihael and Breunig, Markus M and Kriegel, Hans-Peter and Sander, J{\"o}rg},
47
Booktitle = {ACM Sigmod record},
48
Year = {1999},
49
Number = {2},
50
Organization = {ACM},
51
Pages = {49--60},
52
Volume = {28}
53
}
54
55
@Article{baker2016designing,
56
Title = {Designing Neural Network Architectures using Reinforcement Learning},
57
Author = {Baker, Bowen and Gupta, Otkrist and Naik, Nikhil and Raskar, Ramesh},
58
Journal = {arXiv preprint arXiv:1611.02167},
59
Year = {2016},
60
61
Month = nov,
62
63
Url = {https://arxiv.org/abs/1611.02167}
64
}
65
66
@Article{Bao2017,
67
Title = {{CVAE-GAN}: {Fine}-Grained Image Generation through Asymmetric Training},
68
Author = {Jianmin Bao AND Dong Chen AND Fang Wen AND Houqiang Li AND Gang Hua},
69
Journal = {arXiv preprint arXiv:1703.10155},
70
Year = {2017},
71
72
Month = mar,
73
74
Url = {https://arxiv.org/abs/1703.10155}
75
}
76
77
@InProceedings{behmo2010towards,
78
Title = {Towards optimal naive {Bayes} nearest neighbor},
79
Author = {Behmo, R{\'e}gis and Marcombes, Paul and Dalalyan, Arnak and Prinet, V{\'e}ronique},
80
Booktitle = {European Conference on Computer Vision (ECCV)},
81
Year = {2010},
82
Organization = {Springer},
83
Pages = {171--184}
84
}
85
86
@Article{bengio1994learning,
87
Title = {Learning long-term dependencies with gradient descent is difficult},
88
Author = {Bengio, Yoshua and Simard, Patrice and Frasconi, Paolo},
89
Journal = {IEEE transactions on neural networks},
90
Year = {1994},
91
Number = {2},
92
Pages = {157--166},
93
Volume = {5},
94
95
Publisher = {IEEE}
96
}
97
98
@Article{bergstra2012random,
99
Title = {Random search for hyper-parameter optimization},
100
Author = {Bergstra, James and Bengio, Yoshua},
101
Journal = {Journal of Machine Learning Research},
102
Year = {2012},
103
104
Month = feb,
105
Number = {Feb},
106
Pages = {281--305},
107
Volume = {13},
108
109
Url = {http://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf}
110
}
111
112
@TechReport{bergstra2009quadratic,
113
Title = {Quadratic polynomials learn better image features},
114
Author = {Bergstra, James and Desjardins, Guillaume and Lamblin, Pascal and Bengio, Yoshua},
115
Institution = {D{\'e}partement d’Informatique et de Recherche Op{\'e}rationnelle, Universit{\'e} de Montr{\'e}al},
116
Year = {2009},
117
Number = {1337}
118
}
119
120
@InBook{Bodenhausen1993,
121
Title = {Automatically Structured Neural Networks For Handwritten Character And Word Recognition},
122
Author = {Bodenhausen, Ulrich
123
and Manke, Stefan},
124
Editor = {Gielen, Stan
125
and Kappen, Bert},
126
Pages = {956--961},
127
Publisher = {Springer London},
128
Year = {1993},
129
130
Address = {London},
131
Month = sep,
132
133
Booktitle = {International Conference on Artificial Neural Networks (ICANN)},
134
Doi = {10.1007/978-1-4471-2063-6_283},
135
ISBN = {978-1-4471-2063-6},
136
Url = {http://dx.doi.org/10.1007/978-1-4471-2063-6_283}
137
}
138
139
@InProceedings{boureau2010theoretical,
140
Title = {A theoretical analysis of feature pooling in visual recognition},
141
Author = {Boureau, Y-Lan and Ponce, Jean and LeCun, Yann},
142
Booktitle = {International Conference on Machine Learning (ICML)},
143
Year = {2010},
144
Number = {27},
145
Pages = {111--118},
146
147
Url = {http://yann.lecun.com/exdb/publis/pdf/boureau-icml-10.pdf}
148
}
149
150
@Article{charalambous1992conjugate,
151
Title = {Conjugate gradient algorithm for efficient training of artificial neural networks},
152
Author = {Charalambous, Christakis},
153
Journal = {IEEE Proceedings G-Circuits, Devices and Systems},
154
Year = {1992},
155
Number = {3},
156
Pages = {301--310},
157
Volume = {139},
158
159
File = {:home/moose/GitHub/informatik-2011/Master/Master-Arbeit/paper/conjugate-gradient.pdf:PDF},
160
Publisher = {IET},
161
Url = {http://ieeexplore.ieee.org/document/143326/}
162
}
163
164
@Article{chetlur2014cudnn,
165
Title = {{cuDNN}: {Efficient} primitives for deep learning},
166
Author = {Chetlur, Sharan and Woolley, Cliff and Vandermersch, Philippe and Cohen, Jonathan and Tran, John and Catanzaro, Bryan and Shelhamer, Evan},
167
Journal = {arXiv preprint arXiv:1410.0759},
168
Year = {2014},
169
170
Month = oct,
171
172
Url = {https://arxiv.org/abs/1410.0759}
173
}
174
175
@Misc{chollet2015keras,
176
Title = {Keras},
177
178
Author = {Chollet, Fran\c{c}ois},
179
HowPublished = {\url{https://github.com/fchollet/keras}},
180
Year = {2015},
181
182
Publisher = {GitHub}
183
}
184
185
@InProceedings{ciregan2012multi,
186
Title = {Multi-column deep neural networks for image classification},
187
Author = {Ciregan, Dan and Meier, Ueli and Schmidhuber, J{\"u}rgen},
188
Booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
189
Year = {2012},
190
Month = feb,
191
Organization = {IEEE},
192
Pages = {3642--3649},
193
194
Url = {https://arxiv.org/abs/1202.2745v1}
195
}
196
197
@Article{clevert2015fast,
198
Title = {Fast and accurate deep network learning by exponential linear units ({ELUs})},
199
Author = {Clevert, Djork-Arn{\'e} and Unterthiner, Thomas and Hochreiter, Sepp},
200
Journal = {arXiv preprint arXiv:1511.07289},
201
Year = {2015},
202
203
Month = nov,
204
205
Url = {https://arxiv.org/abs/1511.07289}
206
}
207
208
@Misc{STL-10,
209
Title = {{STL-10} dataset},
210
211
Author = {Coates, Adam and Lee, Honglak and Ng, Andrew Y},
212
Year = {2011},
213
214
Url = {http://cs.stanford.edu/~acoates/stl10}
215
}
216
217
@Article{coates2010analysis,
218
Title = {An analysis of single-layer networks in unsupervised feature learning},
219
Author = {Coates, Adam and Lee, Honglak and Ng, Andrew Y},
220
Journal = {Ann Arbor},
221
Year = {2010},
222
Number = {48109},
223
Pages = {2},
224
Volume = {1001},
225
226
Url = {http://cs.stanford.edu/~acoates/papers/coatesleeng_aistats_2011.pdf}
227
}
228
229
@InProceedings{dai2016instance,
230
Title = {Instance-aware semantic segmentation via multi-task network cascades},
231
Author = {Dai, Jifeng and He, Kaiming and Sun, Jian},
232
Booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
233
Year = {2016},
234
Organization = {IEEE},
235
Pages = {3150--3158},
236
237
Url = {https://arxiv.org/abs/1512.04412}
238
}
239
240
@Article{demvsar2006statistical,
241
Title = {Statistical comparisons of classifiers over multiple data sets},
242
Author = {Dem{\v{s}}ar, Janez},
243
Journal = {Journal of Machine learning research},
244
Year = {2006},
245
Number = {Jan},
246
Pages = {1--30},
247
Volume = {7},
248
249
Url = {http://jmlr.csail.mit.edu/papers/volume7/demsar06a/demsar06a.pdf}
250
}
251
252
@Article{dieleman2016exploiting,
253
Title = {Exploiting cyclic symmetry in convolutional neural networks},
254
Author = {Dieleman, Sander and De Fauw, Jeffrey and Kavukcuoglu, Koray},
255
Journal = {arXiv preprint arXiv:1602.02660},
256
Year = {2016},
257
258
Month = feb,
259
260
Url = {https://arxiv.org/abs/1602.02660}
261
}
262
263
@Article{dieleman2015rotation,
264
Title = {Rotation-invariant convolutional neural networks for galaxy morphology prediction},
265
Author = {Dieleman, Sander and Willett, Kyle W and Dambre, Joni},
266
Journal = {Monthly notices of the royal astronomical society},
267
Year = {2015},
268
Number = {2},
269
Pages = {1441--1459},
270
Volume = {450},
271
272
Publisher = {Oxford University Press}
273
}
274
275
@Article{dietterich1998approximate,
276
Title = {Approximate statistical tests for comparing supervised classification learning algorithms},
277
Author = {Dietterich, Thomas G},
278
Journal = {Neural computation},
279
Year = {1998},
280
281
Month = mar,
282
Number = {7},
283
Pages = {1895--1923},
284
Volume = {10},
285
286
Doi = {10.1162/089976698300017197},
287
Publisher = {MIT Press},
288
Url = {http://www.mitpressjournals.org/doi/abs/10.1162/089976698300017197}
289
}
290
291
@InCollection{NIPS2014_5548,
292
Title = {Discriminative Unsupervised Feature Learning with Convolutional Neural Networks},
293
Author = {Dosovitskiy, Alexey and Springenberg, Jost Tobias and Riedmiller, Martin and Brox, Thomas},
294
Booktitle = {Advances in Neural Information Processing Systems 27 (NIPS)},
295
Publisher = {Curran Associates, Inc.},
296
Year = {2014},
297
Editor = {Z. Ghahramani and M. Welling and C. Cortes and N. D. Lawrence and K. Q. Weinberger},
298
Pages = {766--774},
299
300
Url = {http://papers.nips.cc/paper/5548-discriminative-unsupervised-feature-learning-with-convolutional-neural-networks.pdf}
301
}
302
303
@TechReport{dozat2015incorporating,
304
Title = {Incorporating {Nesterov} momentum into {Adam}},
305
Author = {Dozat, Timothy},
306
Institution = {Stanford University},
307
Year = {2015},
308
309
Url = {http://cs229.stanford.edu/proj2015/054_report.pdf}
310
}
311
312
@Article{duch1999survey,
313
Title = {Survey of neural transfer functions},
314
Author = {Duch, W{\l}odzis{\l}aw and Jankowski, Norbert},
315
Journal = {Neural Computing Surveys},
316
Year = {1999},
317
Number = {1},
318
Pages = {163--212},
319
Volume = {2},
320
321
Url = {ftp://ftp.icsi.berkeley.edu/pub/ai/jagota/vol2_6.pdf}
322
}
323
324
@Article{duchi2011adaptive,
325
Title = {Adaptive subgradient methods for online learning and stochastic optimization},
326
Author = {Duchi, John and Hazan, Elad and Singer, Yoram},
327
Journal = {Journal of Machine Learning Research},
328
Year = {2011},
329
Number = {Jul},
330
Pages = {2121--2159},
331
Volume = {12},
332
333
Url = {http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf}
334
}
335
336
@InCollection{dugas2001incorporating,
337
Title = {Incorporating Second-Order Functional Knowledge for Better Option Pricing},
338
Author = {Charles Dugas and Bengio, Yoshua and Fran\c{c}ois B\'{e}lisle and Claude Nadeau and Ren\'{e} Garcia},
339
Booktitle = {Advances in Neural Information Processing Systems 13 (NIPS)},
340
Publisher = {MIT Press},
341
Year = {2001},
342
Editor = {T. K. Leen and T. G. Dietterich and V. Tresp},
343
Pages = {472--478},
344
345
Url = {http://papers.nips.cc/paper/1920-incorporating-second-order-functional-knowledge-for-better-option-pricing.pdf}
346
}
347
348
@Book{eiben2003introduction,
349
Title = {Introduction to evolutionary computing},
350
Author = {Eiben, Agoston E and Smith, James E},
351
Publisher = {Springer},
352
Year = {2003},
353
Volume = {53},
354
355
Url = {https://dx.doi.org/10.1007/978-3-662-44874-8}
356
}
357
358
@InProceedings{asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization,
359
Title = {Asirra: {A} {CAPTCHA} that Exploits Interest-Aligned Manual Image Categorization},
360
Author = {Elson, Jeremy and Douceur, John (JD) and Howell, Jon and Saul, Jared},
361
Booktitle = {ACM Conference on Computer and Communications Security (CCS)},
362
Year = {2007},
363
Month = oct,
364
Number = {14},
365
Publisher = {Association for Computing Machinery, Inc.},
366
367
Abstract = {We present Asirra, a CAPTCHA that asks users to identify cats out of a set of 12 photographs of both cats and dogs. Asirra is easy for users; user studies indicate it can be solved by humans 99.6% of the time in under 30 seconds. Barring a major advance in machine vision, we expect computers will have no better than a 1/54,000 chance of solving it. Asirra’s image database is provided by a novel, mutually beneficial partnership with Petfinder.com. In exchange for the use of their three million images, we display an "adopt me" link beneath each one, promoting Petfinder’s primary mission of finding homes for homeless animals. We describe the design of Asirra, discuss threats to its security, and report early deployment experiences. We also describe two novel algorithms for amplifying the skill gap between humans and computers that can be used on many existing CAPTCHAs.},
368
Url = {https://www.microsoft.com/en-us/research/publication/asirra-a-captcha-that-exploits-interest-aligned-manual-image-categorization/}
369
}
370
371
@InProceedings{ester1996density-dbscan,
372
Title = {A density-based algorithm for discovering clusters in large spatial databases with noise.},
373
Author = {Ester, Martin and Kriegel, Hans-Peter and Sander, J{\"o}rg and Xu, Xiaowei and others},
374
Booktitle = {Kdd},
375
Year = {1996},
376
Number = {34},
377
Pages = {226--231},
378
Volume = {96}
379
}
380
381
@Article{quickprop,
382
Title = {An empirical study of learning speed in back-propagation networks},
383
Author = {Fahlman, Scott E},
384
Year = {1988},
385
386
Url = {http://repository.cmu.edu/cgi/viewcontent.cgi?article=2799&context=compsci}
387
}
388
389
@Article{fahlman1989cascade,
390
Title = {The cascade-correlation learning architecture},
391
Author = {Fahlman, Scott E and Lebiere, Christian},
392
Year = {1989},
393
394
Url = {http://repository.cmu.edu/compsci/1938/}
395
}
396
397
@Article{fei2006one,
398
Title = {One-shot learning of object categories},
399
Author = {Fei-Fei, Li and Fergus, Rob and Perona, Pietro},
400
Journal = {IEEE transactions on pattern analysis and machine intelligence},
401
Year = {2006},
402
403
Month = apr,
404
Number = {4},
405
Pages = {594--611},
406
Volume = {28},
407
408
Publisher = {IEEE},
409
Url = {http://vision.stanford.edu/documents/Fei-FeiFergusPerona2006.pdf}
410
}
411
412
@Misc{Caltech-101,
413
Title = {Caltech 101},
414
415
Author = {Fei-Fei, R. Fergus and P. Perona},
416
Year = {2003},
417
418
Url = {http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html}
419
}
420
421
@Article{felzenszwalb2010object,
422
Title = {Object detection with discriminatively trained part-based models},
423
Author = {Felzenszwalb, Pedro F and Girshick, Ross B and McAllester, David and Ramanan, Deva},
424
Journal = {IEEE transactions on pattern analysis and machine intelligence},
425
Year = {2010},
426
Number = {9},
427
Pages = {1627--1645},
428
Volume = {32},
429
430
Publisher = {IEEE}
431
}
432
433
@Article{gal2015bayesian,
434
Title = {Bayesian convolutional neural networks with {Bernoulli} approximate variational inference},
435
Author = {Gal, Yarin and Ghahramani, Zoubin},
436
Journal = {arXiv preprint arXiv:1506.02158},
437
Year = {2016},
438
439
Month = jan,
440
441
Url = {https://arxiv.org/abs/1506.02158v6}
442
}
443
444
@Book{garey2002computers,
445
Title = {Computers and intractability},
446
Author = {Garey, Michael R and Johnson, David S},
447
Publisher = {wh freeman New York},
448
Year = {2002},
449
Volume = {29}
450
}
451
452
@Article{garey1976some,
453
Title = {Some simplified {NP}-complete graph problems},
454
Author = {Garey, Michael R and Johnson, David S. and Stockmeyer, Larry},
455
Journal = {Theoretical computer science},
456
Year = {1976},
457
Number = {3},
458
Pages = {237--267},
459
Volume = {1},
460
461
Publisher = {Elsevier}
462
}
463
464
@InProceedings{girshick2014rich,
465
Title = {Rich feature hierarchies for accurate object detection and semantic segmentation},
466
Author = {Girshick, Ross and Donahue, Jeff and Darrell, Trevor and Malik, Jitendra},
467
Booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
468
Year = {2014},
469
Organization = {IEEE},
470
Pages = {580--587},
471
472
Url = {https://arxiv.org/abs/1311.2524}
473
}
474
475
@InProceedings{glorot2010understanding,
476
Title = {Understanding the difficulty of training deep feedforward neural networks.},
477
Author = {Glorot, Xavier and Bengio, Yoshua},
478
Booktitle = {Aistats},
479
Year = {2010},
480
Pages = {249--256},
481
Volume = {9},
482
483
Url = {http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf}
484
}
485
486
@InProceedings{glorot2011deep,
487
Title = {Deep Sparse Rectifier Neural Networks.},
488
Author = {Glorot, Xavier and Bordes, Antoine and Bengio, Yoshua},
489
Booktitle = {Aistats},
490
Year = {2011},
491
Number = {106},
492
Pages = {275},
493
Volume = {15},
494
495
Url = {http://www.jmlr.org/proceedings/papers/v15/glorot11a/glorot11a.pdf}
496
}
497
498
@InProceedings{golle2008machine,
499
Title = {Machine learning attacks against the {Asirra} {CAPTCHA}},
500
Author = {Golle, Philippe},
501
Booktitle = {ACM conference on Computer and communications security (CCS)},
502
Year = {2008},
503
Number = {15},
504
Organization = {ACM},
505
Pages = {535--542}
506
}
507
508
@Article{goodfellow2013maxout,
509
Title = {Maxout networks.},
510
Author = {Goodfellow, Ian J and Warde-Farley, David and Mirza, Mehdi and Courville, Aaron C and Bengio, Yoshua},
511
Journal = {ICML},
512
Year = {2013},
513
Number = {3},
514
Pages = {1319--1327},
515
Volume = {28},
516
517
Url = {http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf}
518
}
519
520
@Article{graham2014fractional,
521
Title = {Fractional max-pooling},
522
Author = {Graham, Benjamin},
523
Journal = {arXiv preprint arXiv:1412.6071},
524
Year = {2015},
525
526
Month = may,
527
528
Url = {https://arxiv.org/abs/1412.6071}
529
}
530
531
@Article{GregGriffin2007,
532
Title = {Caltech-256 Object Category Dataset},
533
Author = {Greg Griffin, Alex Holub, Pietro Perona},
534
Year = {2007},
535
536
Month = apr,
537
538
Publisher = {California Institute of Technology},
539
Url = {http://authors.library.caltech.edu/7694/}
540
}
541
542
@Misc{Griffin2006,
543
Title = {Caltech 256},
544
545
Author = {Griffin, G. Holub, AD. Perona},
546
Year = {2006},
547
548
Url = {http://www.vision.caltech.edu/Image_Datasets/Caltech256/}
549
}
550
551
@Book{han2011data,
552
Title = {Data mining: concepts and techniques},
553
Author = {Han, Jiawei and Pei, Jian and Kamber, Micheline},
554
Publisher = {Elsevier},
555
Year = {2011}
556
}
557
558
@Article{han2016dsd,
559
Title = {{DSD}: {Regularizing} deep neural networks with dense-sparse-dense training flow},
560
Author = {Han, Song and Pool, Jeff and Narang, Sharan and Mao, Huizi and Tang, Shijian and Elsen, Erich and Catanzaro, Bryan and Tran, John and Dally, William J},
561
Journal = {arXiv preprint arXiv:1607.04381},
562
Year = {2016},
563
564
Month = jul,
565
566
Url = {https://arxiv.org/abs/1607.04381}
567
}
568
569
@InCollection{han2015learning,
570
Title = {Learning both Weights and Connections for Efficient Neural Network},
571
Author = {Han, Song and Pool, Jeff and Tran, John and Dally, William},
572
Booktitle = {Advances in Neural Information Processing Systems 28 (NIPS)},
573
Publisher = {Curran Associates, Inc.},
574
Year = {2015},
575
Editor = {C. Cortes and N. D. Lawrence and D. D. Lee and M. Sugiyama and R. Garnett},
576
Month = jun,
577
Pages = {1135--1143},
578
579
Url = {http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf}
580
}
581
582
@InProceedings{hanson1989meiosis,
583
Title = {Meiosis Networks.},
584
Author = {Hanson, Stephen Jos{\'e}},
585
Booktitle = {NIPS},
586
Year = {1989},
587
Pages = {533--541},
588
589
Url = {http://papers.nips.cc/paper/227-meiosis-networks.pdf}
590
}
591
592
@Article{hardt2016identity,
593
Title = {Identity Matters in Deep Learning},
594
Author = {Hardt, Moritz and Ma, Tengyu},
595
Journal = {arXiv preprint arXiv:1611.04231},
596
Year = {2016},
597
598
Month = nov,
599
600
Url = {https://arxiv.org/abs/1611.04231}
601
}
602
603
@Misc{Harris2015,
604
Title = {New Features in {CUDA} 7.5},
605
606
Author = {Mark Harris},
607
Month = jul,
608
Year = {2015},
609
610
Url = {https://devblogs.nvidia.com/parallelforall/new-features-cuda-7-5/}
611
}
612
613
@InProceedings{hassibi1993optimal,
614
Title = {Optimal brain surgeon and general network pruning},
615
Author = {Hassibi, Babak and Stork, David G and Wolff, Gregory J},
616
Booktitle = {International Conference on Neural Networks},
617
Year = {1993},
618
Organization = {IEEE},
619
Pages = {293--299},
620
621
Url = {http://ee.caltech.edu/Babak/pubs/conferences/00298572.pdf}
622
}
623
624
@Article{deep-residual-networks-2015,
625
Title = {Deep residual learning for image recognition},
626
Author = {He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
627
Journal = {arXiv preprint arXiv:1512.03385},
628
Year = {2015},
629
630
Month = dec,
631
632
Url = {https://arxiv.org/abs/1512.03385v1}
633
}
634
635
@InProceedings{he2015delving,
636
Title = {Delving deep into rectifiers: {Surpassing} human-level performance on imagenet classification},
637
Author = {He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
638
Booktitle = {International Conference on Computer Vision (ICCV)},
639
Year = {2015},
640
Month = feb,
641
Pages = {1026--1034},
642
643
Url = {https://arxiv.org/abs/1502.01852}
644
}
645
646
@InProceedings{he2014spatial,
647
Title = {Spatial pyramid pooling in deep convolutional networks for visual recognition},
648
Author = {He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
649
Booktitle = {European Conference on Computer Vision (ECCV)},
650
Year = {2014},
651
Organization = {Springer},
652
Pages = {346--361},
653
654
Url = {https://arxiv.org/abs/1406.4729}
655
}
656
657
@Article{hinton2015distilling,
658
Title = {Distilling the knowledge in a neural network},
659
Author = {Hinton, Geoffrey and Vinyals, Oriol and Dean, Jeff},
660
Journal = {arXiv preprint arXiv:1503.02531},
661
Year = {2015},
662
663
Month = mar,
664
665
Url = {https://arxiv.org/abs/1503.02531}
666
}
667
668
@Article{hinton2012-dropout,
669
Title = {Improving neural networks by preventing co-adaptation of feature detectors},
670
Author = {Hinton, Geoffrey E and Srivastava, Nitish and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan R},
671
Journal = {arXiv preprint arXiv:1207.0580},
672
Year = {2012},
673
674
Month = jul,
675
676
Url = {https://arxiv.org/abs/1207.0580}
677
}
678
679
@Article{howard2013some,
680
Title = {Some improvements on deep convolutional neural network based image classification},
681
Author = {Howard, Andrew G},
682
Journal = {arXiv preprint arXiv:1312.5402},
683
Year = {2013},
684
685
Month = dec,
686
687
Url = {https://arxiv.org/abs/1312.5402}
688
}
689
690
@Article{huang2016densely,
691
Title = {Densely connected convolutional networks},
692
Author = {Huang, Gao and Liu, Zhuang and Weinberger, Kilian Q},
693
Journal = {arXiv preprint arXiv:1608.06993},
694
Year = {2016},
695
696
Month = aug,
697
698
Url = {https://arxiv.org/abs/1608.06993v1}
699
}
700
701
@Article{huang2016deep,
702
Title = {Deep networks with stochastic depth},
703
Author = {Huang, Gao and Sun, Yu and Liu, Zhuang and Sedra, Daniel and Weinberger, Kilian},
704
Journal = {arXiv preprint arXiv:1603.09382},
705
Year = {2016},
706
707
Month = mar,
708
709
Url = {https://arxiv.org/abs/1603.09382}
710
}
711
712
@Article{huh2016makes,
713
Title = {What makes {ImageNet} good for transfer learning?},
714
Author = {Huh, Minyoung and Agrawal, Pulkit and Efros, Alexei A},
715
Journal = {arXiv preprint arXiv:1608.08614},
716
Year = {2016},
717
718
Month = aug,
719
720
Url = {https://arxiv.org/abs/1608.08614}
721
}
722
723
@Article{BatchNormalization-2015,
724
Title = {Batch normalization: {Accelerating} deep network training by reducing internal covariate shift},
725
Author = {Ioffe, Sergey and Szegedy, Christian},
726
Journal = {arXiv preprint arXiv:1502.03167},
727
Year = {2015},
728
729
Month = feb,
730
731
Url = {https://arxiv.org/abs/1502.03167}
732
}
733
734
@InProceedings{jin2016deep,
735
Title = {Deep learning with s-shaped rectified linear activation units},
736
Author = {Jin, Xiaojie and Xu, Chunyan and Feng, Jiashi and Wei, Yunchao and Xiong, Junjun and Yan, Shuicheng},
737
Booktitle = {Thirtieth AAAI Conference on Artificial Intelligence},
738
Year = {2016},
739
Month = dec,
740
741
Url = {https://arxiv.org/abs/1512.07030}
742
}
743
744
@Misc{Karpathy2011,
745
Title = {Lessons learned from manually classifying {CIFAR-10}},
746
747
Author = {Andrej Karpathy},
748
Month = apr,
749
Year = {2011},
750
751
Url = {http://karpathy.github.io/2011/04/27/manually-classifying-cifar10/}
752
}
753
754
@Book{kaufman2009finding-diana,
755
Title = {Finding groups in data: an introduction to cluster analysis},
756
Author = {Kaufman, Leonard and Rousseeuw, Peter J},
757
Publisher = {John Wiley \& Sons},
758
Year = {2009},
759
Volume = {344}
760
}
761
762
@InCollection{kavukcuoglu2010learning,
763
Title = {Learning Convolutional Feature Hierarchies for Visual Recognition},
764
Author = {Kavukcuoglu, Koray and Pierre Sermanet and Y-lan Boureau and Gregor, Karol and Michael Mathieu and Yann L. Cun},
765
Booktitle = {Advances in Neural Information Processing Systems 23 (NIPS)},
766
Publisher = {Curran Associates, Inc.},
767
Year = {2010},
768
Editor = {J. D. Lafferty and C. K. I. Williams and J. Shawe-Taylor and R. S. Zemel and A. Culotta},
769
Pages = {1090--1098},
770
771
Url = {http://papers.nips.cc/paper/4133-learning-convolutional-feature-hierarchies-for-visual-recognition.pdf}
772
}
773
774
@Article{keskar2016large,
775
Title = {On large-batch training for deep learning: {Generalization} gap and sharp minima},
776
Author = {Keskar, Nitish Shirish and Mudigere, Dheevatsa and Nocedal, Jorge and Smelyanskiy, Mikhail and Tang, Ping Tak Peter},
777
Journal = {arXiv preprint arXiv:1609.04836},
778
Year = {2016},
779
780
Month = sep,
781
782
Url = {https://arxiv.org/abs/1609.04836}
783
}
784
785
@Article{kim2015deep,
786
Title = {Deep Clustered Convolutional Kernels},
787
Author = {Kim, Minyoung and Rigazio, Luca},
788
Journal = {arXiv preprint arXiv:1503.01824},
789
Year = {2015},
790
791
Month = mar,
792
793
Url = {https://arxiv.org/abs/1503.01824}
794
}
795
796
@Article{kim2015compression,
797
Title = {Compression of deep convolutional neural networks for fast and low power mobile applications},
798
Author = {Kim, Yong-Deok and Park, Eunhyeok and Yoo, Sungjoo and Choi, Taelim and Yang, Lu and Shin, Dongjun},
799
Journal = {arXiv preprint arXiv:1511.06530},
800
Year = {2015},
801
802
Month = nov,
803
804
Url = {https://arxiv.org/abs/1511.06530}
805
}
806
807
@Article{kingma2014adam,
808
Title = {Adam: A method for stochastic optimization},
809
Author = {Kingma, Diederik and Ba, Jimmy},
810
Journal = {arXiv preprint arXiv:1412.6980},
811
Year = {2014},
812
813
Month = dec,
814
815
Url = {https://arxiv.org/abs/1412.6980}
816
}
817
818
@PhdThesis{kocmanek2015hyperneat,
819
Title = {{HyperNEAT} and Novelty Search for Image Recognition},
820
Author = {Kocm{\'a}nek, T},
821
School = {Master’s thesis, Czech Technical University in Prague},
822
Year = {2015},
823
824
Url = {http://kocmi.tk/photos/DiplomaThesis.pdf}
825
}
826
827
@Misc{CIFAR-10,
828
Title = {The {CIFAR-10} dataset},
829
830
Author = {Alex Krizhevsky},
831
832
Url = {https://www.cs.toronto.edu/~kriz/cifar.html}
833
}
834
835
@Article{krizhevsky2009learning,
836
Title = {Learning multiple layers of features from tiny images},
837
Author = {Krizhevsky, Alex and Hinton, Geoffrey},
838
Year = {2009},
839
840
Month = apr,
841
842
File = {:home/moose/GitHub/msthesis/paper/10.1.1.222.9220.pdf:PDF},
843
Publisher = {Citeseer},
844
Url = {https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf}
845
}
846
847
@InCollection{AlexNet-2012,
848
Title = {ImageNet Classification with Deep Convolutional Neural Networks},
849
Author = {Alex Krizhevsky and Sutskever, Ilya and Hinton, Geoffrey E},
850
Booktitle = {Advances in Neural Information Processing Systems 25 (NIPS)},
851
Publisher = {Curran Associates, Inc.},
852
Year = {2012},
853
Editor = {F. Pereira and C. J. C. Burges and L. Bottou and K. Q. Weinberger},
854
Pages = {1097--1105},
855
856
Url = {http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf}
857
}
858
859
@Article{971754,
860
Title = {Comparison of worst case errors in linear and neural network approximation},
861
Author = {V. Kurkova and M. Sanguineti},
862
Journal = {IEEE Transactions on Information Theory},
863
Year = {2002},
864
865
Month = jan,
866
Number = {1},
867
Pages = {264-275},
868
Volume = {48},
869
870
Doi = {10.1109/18.971754},
871
ISSN = {0018-9448},
872
Keywords = {approximation theory;error analysis;feedforward neural nets;function approximation;perceptrons;set theory;fixed basis functions;linear approximation;multivariable functions;multivariable optimization;neural network approximation;one-hidden-layer feedforward neural networks;perceptron networks;sets;variable basis functions;worst case errors;Adaptive control;Chromium;Computer aided software engineering;Computer science;Electrical equipment industry;Industrial control;Intelligent networks;Joining materials;Linear approximation;Neural networks},
873
Url = {http://ieeexplore.ieee.org/abstract/document/971754/}
874
}
875
876
@InBook{vanLaarhoven1987,
877
Title = {Simulated annealing},
878
Author = {van Laarhoven, Peter J. M.
879
and Aarts, Emile H. L.},
880
Pages = {7--15},
881
Publisher = {Springer Netherlands},
882
Year = {1987},
883
884
Address = {Dordrecht},
885
886
Booktitle = {Simulated Annealing: {Theory} and Applications},
887
Doi = {10.1007/978-94-015-7744-1_2},
888
ISBN = {978-94-015-7744-1},
889
Url = {http://dx.doi.org/10.1007/978-94-015-7744-1_2}
890
}
891
892
@InProceedings{lavin2016fast,
893
Title = {Fast algorithms for convolutional neural networks},
894
Author = {Lavin, Andrew and Gray, Scott},
895
Booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
896
Year = {2016},
897
Month = sep,
898
Organization = {IEEE},
899
Pages = {4013--4021},
900
901
Url = {https://arxiv.org/abs/1509.09308}
902
}
903
904
@InProceedings{le2013building,
905
Title = {Building high-level features using large scale unsupervised learning},
906
Author = {Le, Quoc V},
907
Booktitle = {International conference on acoustics, speech and signal processing},
908
Year = {2013},
909
Organization = {IEEE},
910
Pages = {8595--8598},
911
912
Url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6639343}
913
}
914
915
@InBook{EfficientBackprop,
916
Title = {Efficient BackProp},
917
Author = {LeCun, Yann A.
918
and Bottou, L{\'e}on
919
and Orr, Genevieve B.
920
and M{\"u}ller, Klaus-Robert},
921
Editor = {Montavon, Gr{\'e}goire
922
and Orr, Genevi{\`e}ve B.
923
and M{\"u}ller, Klaus-Robert},
924
Pages = {9--50},
925
Publisher = {Springer Berlin Heidelberg},
926
Year = {1998},
927
928
Address = {Berlin, Heidelberg},
929
Series = {Lecture Notes in Computer Science},
930
Volume = {1524},
931
932
Booktitle = {Neural Networks: {Tricks} of the Trade: Second Edition},
933
ISBN = {978-3-642-35289-8},
934
Url = {http://dx.doi.org/10.1007/3-540-49430-8}
935
}
936
937
@Article{lecun2015deep,
938
Title = {Deep learning},
939
Author = {LeCun, Yann and Bengio, Yoshua and Hinton, Geoffrey},
940
Journal = {Nature},
941
Year = {2015},
942
943
Month = may,
944
Number = {7553},
945
Pages = {436--444},
946
Volume = {521},
947
948
Publisher = {Nature Publishing Group},
949
Url = {http://www.nature.com/nature/journal/v521/n7553/abs/nature14539.html}
950
}
951
952
@Article{LeNet-5,
953
Title = {Gradient-based learning applied to document recognition},
954
Author = {LeCun, Yann and Bottou, L{\'e}on and Bengio, Yoshua and Haffner, Patrick},
955
Journal = {Proceedings of the IEEE},
956
Year = {1998},
957
958
Month = nov,
959
Number = {11},
960
Pages = {2278-2324},
961
Volume = {86},
962
963
Doi = {10.1109/5.726791},
964
ISSN = {0018-9219},
965
Keywords = {backpropagation;convolution;multilayer perceptrons;optical character recognition;2D shape variability;GTN;back-propagation;cheque reading;complex decision surface synthesis;convolutional neural network character recognizers;document recognition;document recognition systems;field extraction;gradient based learning technique;gradient-based learning;graph transformer networks;handwritten character recognition;handwritten digit recognition task;high-dimensional patterns;language modeling;multilayer neural networks;multimodule systems;performance measure minimization;segmentation recognition;Character recognition;Feature extraction;Hidden Markov models;Machine learning;Multi-layer neural network;Neural networks;Optical character recognition software;Optical computing;Pattern recognition;Principal component analysis},
966
Url = {http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf}
967
}
968
969
@InProceedings{lecun1989optimal,
970
Title = {Optimal brain damage.},
971
Author = {LeCun, Yann and Denker, John S and Solla, Sara A and Howard, Richard E and Jackel, Lawrence D},
972
Booktitle = {NIPs},
973
Year = {1989},
974
Pages = {598--605},
975
Volume = {2},
976
977
Url = {http://yann.lecun.com/exdb/publis/pdf/lecun-90b.pdf}
978
}
979
980
@InProceedings{lee2016generalizing,
981
Title = {Generalizing pooling functions in convolutional neural networks: {Mixed}, gated, and tree},
982
Author = {Lee, Chen-Yu and Gallagher, Patrick W and Tu, Zhuowen},
983
Booktitle = {International Conference on Artificial Intelligence and Statistics},
984
Year = {2016},
985
986
Url = {https://arxiv.org/abs/1509.08985v2}
987
}
988
989
@Article{li2016learning,
990
Title = {Learning to optimize},
991
Author = {Li, Ke and Malik, Jitendra},
992
Journal = {arXiv preprint arXiv:1606.01885},
993
Year = {2016},
994
995
Month = jun,
996
997
Url = {https://arxiv.org/abs/1606.01885}
998
}
999
1000
@Article{li2016hyperband,
1001
Title = {Hyperband: {A} Novel Bandit-Based Approach to Hyperparameter Optimization},
1002
Author = {Li, Lisha and Jamieson, Kevin and DeSalvo, Giulia and Rostamizadeh, Afshin and Talwalkar, Ameet},
1003
Journal = {arXiv preprint arXiv:1603.06560},
1004
Year = {2016},
1005
1006
Month = mar,
1007
1008
Url = {https://arxiv.org/abs/1603.06560}
1009
}
1010
1011
@Article{LingxiXie2017,
1012
Title = {Genetic {CNN}},
1013
Author = {Lingxi Xie, Alan Yuille},
1014
Journal = {arXiv preprint arXiv:1703.01513},
1015
Year = {2017},
1016
1017
Month = mar,
1018
1019
Url = {https://arxiv.org/abs/1703.01513}
1020
}
1021
1022
@InProceedings{liu2016ssd,
1023
Title = {{SSD}: {Single} shot multibox detector},
1024
Author = {Liu, Wei and Anguelov, Dragomir and Erhan, Dumitru and Szegedy, Christian and Reed, Scott and Fu, Cheng-Yang and Berg, Alexander C},
1025
Booktitle = {European Conference on Computer Vision (ECCV)},
1026
Year = {2016},
1027
Organization = {Springer},
1028
Pages = {21--37},
1029
1030
Url = {https://arxiv.org/abs/1512.02325}
1031
}
1032
1033
@InProceedings{long2015fully,
1034
Title = {Fully convolutional networks for semantic segmentation},
1035
Author = {Long, Jonathan and Shelhamer, Evan and Darrell, Trevor},
1036
Booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
1037
Year = {2015},
1038
Month = mar,
1039
Organization = {IEEE},
1040
Pages = {3431--3440},
1041
1042
Url = {https://arxiv.org/abs/1411.4038v2}
1043
}
1044
1045
@Article{DBLP:journals/corr/LoshchilovH16a,
1046
Title = {{SGDR:} Stochastic Gradient Descent with Restarts},
1047
Author = {Ilya Loshchilov and
1048
Frank Hutter},
1049
Journal = {arXiv preprint arXiv:1608.03983},
1050
Year = {2016},
1051
1052
Month = aug,
1053
Volume = {abs/1608.03983},
1054
1055
Bibsource = {dblp computer science bibliography, http://dblp.org},
1056
Biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/LoshchilovH16a},
1057
Timestamp = {Fri, 02 Sep 2016 17:46:24 +0200},
1058
Url = {https://arxiv.org/abs/1608.03983}
1059
}
1060
1061
@Article{loshchilov10sgdr,
1062
Title = {{SGDR:} Stochastic Gradient Descent with Warm Restarts},
1063
Author = {Loshchilov, Ilya and Hutter, Frank},
1064
Journal = {Learning},
1065
Year = {2016},
1066
1067
Month = aug,
1068
1069
Url = {https://arxiv.org/abs/1608.03983}
1070
}
1071
1072
@InProceedings{maas2013rectifier,
1073
Title = {Rectifier nonlinearities improve neural network acoustic models},
1074
Author = {Maas, Andrew L and Hannun, Awni Y and Ng, Andrew Y},
1075
Booktitle = {Proc. ICML},
1076
Year = {2013},
1077
Number = {1},
1078
Volume = {30},
1079
1080
Url = {https://web.stanford.edu/~awni/papers/relu_hybrid_icml2013_final.pdf}
1081
}
1082
1083
@Article{maaten2008visualizing,
1084
Title = {Visualizing data using {t-SNE}},
1085
Author = {Maaten, Laurens van der and Hinton, Geoffrey},
1086
Journal = {Journal of Machine Learning Research},
1087
Year = {2008},
1088
Number = {Nov},
1089
Pages = {2579--2605},
1090
Volume = {9}
1091
}
1092
1093
@InProceedings{maclaurin2015gradient,
1094
Title = {Gradient-based hyperparameter optimization through reversible learning},
1095
Author = {Maclaurin, Dougal and Duvenaud, David and Adams, Ryan},
1096
Booktitle = {International Conference on Machine Learning (ICML)},
1097
Year = {2015},
1098
Pages = {2113--2122}
1099
}
1100
1101
@Article{mahendran2016visualizing,
1102
Title = {Visualizing deep convolutional neural networks using natural pre-images},
1103
Author = {Mahendran, Aravindh and Vedaldi, Andrea},
1104
Journal = {International Journal of Computer Vision},
1105
Year = {2016},
1106
1107
Month = apr,
1108
Pages = {1--23},
1109
1110
Publisher = {Springer},
1111
Url = {https://arxiv.org/abs/1512.02017}
1112
}
1113
1114
@Misc{Majumdar2017-densenet-weights,
1115
Title = {DenseNet},
1116
1117
Author = {Somshubra Majumdar},
1118
HowPublished = {GitHub},
1119
Month = feb,
1120
Year = {2017},
1121
1122
Url = {https://github.com/titu1994/DenseNet}
1123
}
1124
1125
@InProceedings{marszalek2007accurate,
1126
Title = {Accurate object localization with shape masks},
1127
Author = {Marszalek, Marcin and Schmid, Cordelia},
1128
Booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
1129
Year = {2007},
1130
Organization = {IEEE},
1131
Pages = {1--8},
1132
1133
Url = {http://ieeexplore.ieee.org/document/4270110/}
1134
}
1135
1136
@Misc{IG02-dataset,
1137
Title = {{INRIA} Annotations for {Graz-02} ({IG02})},
1138
1139
Author = {Marcin Marszałek},
1140
Month = oct,
1141
Year = {2008},
1142
1143
Url = {http://lear.inrialpes.fr/people/marszalek/data/ig02/}
1144
}
1145
1146
@Article{mcculloch1943logical,
1147
Title = {A logical calculus of the ideas immanent in nervous activity},
1148
Author = {McCulloch, Warren S and Pitts, Walter},
1149
Journal = {The bulletin of mathematical biophysics},
1150
Year = {1943},
1151
Number = {4},
1152
Pages = {115--133},
1153
Volume = {5},
1154
1155
Publisher = {Springer}
1156
}
1157
1158
@InProceedings{7301739,
1159
Title = {Data-augmentation for reducing dataset bias in person re-identification},
1160
Author = {N. McLaughlin and J. M. Del Rincon and P. Miller},
1161
Booktitle = {International Conference on Advanced Video and Signal Based Surveillance (AVSS)},
1162
Year = {2015},
1163
Month = aug,
1164
Number = {12},
1165
Pages = {1-6},
1166
1167
Doi = {10.1109/AVSS.2015.7301739},
1168
Keywords = {image processing;convolutional network based reidentification system;cross-dataset generalisation;data augmentation;dataset bias reduction;image background;person reidentification;Accuracy;Cameras;Image color analysis;Lighting;Standards;Testing;Training},
1169
Url = {http://ieeexplore.ieee.org/abstract/document/7301739/}
1170
}
1171
1172
@Article{mishkin2015all,
1173
Title = {All you need is a good init},
1174
Author = {Mishkin, Dmytro and Matas, Jiri},
1175
Journal = {arXiv preprint arXiv:1511.06422},
1176
Year = {2015},
1177
1178
Month = nov,
1179
1180
Url = {https://arxiv.org/abs/1511.06422}
1181
}
1182
1183
@Article{mishkin2016systematic,
1184
Title = {Systematic evaluation of {CNN} advances on the {ImageNet}},
1185
Author = {Mishkin, Dmytro and Sergievskiy, Nikolay and Matas, Jiri},
1186
Journal = {arXiv preprint arXiv:1606.02228},
1187
Year = {2016},
1188
1189
Month = jun,
1190
1191
Url = {https://arxiv.org/abs/1606.02228}
1192
}
1193
1194
@InCollection{natarajan2013learning,
1195
Title = {Learning with Noisy Labels},
1196
Author = {Natarajan, Nagarajan and Dhillon, Inderjit S and Ravikumar, Pradeep K and Tewari, Ambuj},
1197
Booktitle = {Advances in Neural Information Processing Systems 26 (NIPS)},
1198
Publisher = {Curran Associates, Inc.},
1199
Year = {2013},
1200
Editor = {C. J. C. Burges and L. Bottou and M. Welling and Z. Ghahramani and K. Q. Weinberger},
1201
Pages = {1196--1204},
1202
1203
Url = {http://papers.nips.cc/paper/5073-learning-with-noisy-labels.pdf}
1204
}
1205
1206
@InProceedings{nesterov1983method,
1207
Title = {A method of solving a convex programming problem with convergence rate O (1/k2)},
1208
Author = {Nesterov, Yurii},
1209
Booktitle = {Soviet Mathematics Doklady},
1210
Year = {1983},
1211
Number = {2},
1212
Pages = {372--376},
1213
Volume = {27}
1214
}
1215
1216
@InProceedings{netzer2011reading,
1217
Title = {Reading digits in natural images with unsupervised feature learning},
1218
Author = {Netzer, Yuval and Wang, Tao and Coates, Adam and Bissacco, Alessandro and Wu, Bo and Ng, Andrew Y},
1219
Booktitle = {NIPS workshop on deep learning and unsupervised feature learning},
1220
Year = {2011},
1221
Number = {2},
1222
Pages = {5},
1223
Volume = {2011},
1224
1225
Url = {http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf}
1226
}
1227
1228
@Misc{YuvalNetzer2011,
1229
Title = {The Street View House Numbers ({SVHN}) Dataset},
1230
1231
Author = {Yuval Netzer AND Tao Wang AND Adam Coates AND Alessandro Bissacco AND Bo Wu AND Andrew Y. Ng},
1232
Year = {2011},
1233
1234
Url = {http://ufldl.stanford.edu/housenumbers/}
1235
}
1236
1237
@Misc{Ng2016,
1238
Title = {Nuts and bolts of building AI applications using Deep Learning},
1239
1240
Author = {Andrew Ng},
1241
HowPublished = {NIPS Talk},
1242
Month = dec,
1243
Year = {2016}
1244
}
1245
1246
@Article{ng2002clarans,
1247
Title = {{CLARANS}: {A} method for clustering objects for spatial data mining},
1248
Author = {Ng, Raymond T. and Han, Jiawei},
1249
Journal = {IEEE transactions on knowledge and data engineering},
1250
Year = {2002},
1251
Number = {5},
1252
Pages = {1003--1016},
1253
Volume = {14},
1254
1255
Publisher = {IEEE}
1256
}
1257
1258
@Article{nguyen2016multifaceted,
1259
Title = {Multifaceted Feature Visualization: {Uncovering} the Different Types of Features Learned By Each Neuron in Deep Neural Networks},
1260
Author = {Nguyen, Anh and Yosinski, Jason and Clune, Jeff},
1261
Journal = {arXiv preprint arXiv:1602.03616},
1262
Year = {2016},
1263
1264
Month = may,
1265
1266
Url = {https://arxiv.org/abs/1602.03616}
1267
}
1268
1269
@InProceedings{nguyen2015deep,
1270
Title = {Deep neural networks are easily fooled: {High} confidence predictions for unrecognizable images},
1271
Author = {Nguyen, Anh and Yosinski, Jason and Clune, Jeff},
1272
Booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
1273
Year = {2015},
1274
Month = dec,
1275
Organization = {IEEE},
1276
Pages = {427--436},
1277
1278
Url = {https://arxiv.org/abs/1412.1897v4}
1279
}
1280
1281
@Article{nowlan1992simplifying,
1282
Title = {Simplifying neural networks by soft weight-sharing},
1283
Author = {Nowlan, Steven J and Hinton, Geoffrey E},
1284
Journal = {Neural computation},
1285
Year = {1992},
1286
Number = {4},
1287
Pages = {473--493},
1288
Volume = {4},
1289
1290
Publisher = {MIT Press},
1291
Url = {https://www.cs.toronto.edu/~hinton/absps/sunspots.pdf}
1292
}
1293
1294
@Article{ortigosa2016towards,
1295
Title = {Towards Competitive Classifiers for Unbalanced Classification Problems: {A} Study on the Performance Scores},
1296
Author = {Ortigosa-Hern{\'a}ndez, Jonathan and Inza, I{\~n}aki and Lozano, Jose A},
1297
Journal = {arXiv preprint arXiv:1608.08984},
1298
Year = {2016},
1299
1300
Month = aug,
1301
1302
Url = {https://arxiv.org/abs/1608.08984}
1303
}
1304
1305
@Article{papernot2015distillation,
1306
Title = {Distillation as a defense to adversarial perturbations against deep neural networks},
1307
Author = {Papernot, Nicolas and McDaniel, Patrick and Wu, Xi and Jha, Somesh and Swami, Ananthram},
1308
Journal = {arXiv preprint arXiv:1511.04508},
1309
Year = {2015},
1310
1311
Month = nov,
1312
1313
Url = {https://arxiv.org/abs/1511.04508}
1314
}
1315
1316
@InBook{Prechelt1998,
1317
Title = {Early Stopping - But When?},
1318
Author = {Prechelt, Lutz},
1319
Editor = {Orr, Genevieve B.
1320
and M{\"u}ller, Klaus-Robert},
1321
Pages = {55--69},
1322
Publisher = {Springer Berlin Heidelberg},
1323
Year = {1998},
1324
1325
Address = {Berlin, Heidelberg},
1326
1327
Booktitle = {Neural Networks: {Tricks} of the Trade},
1328
Doi = {10.1007/3-540-49430-8_3},
1329
ISBN = {978-3-540-49430-0},
1330
Url = {http://dx.doi.org/10.1007/3-540-49430-8_3}
1331
}
1332
1333
@Article{ribeiro2016should,
1334
Title = {"Why Should I Trust You?": {Explaining} the Predictions of Any Classifier},
1335
Author = {Ribeiro, Marco Tulio and Singh, Sameer and Guestrin, Carlos},
1336
Journal = {arXiv preprint arXiv:1602.04938},
1337
Year = {2016},
1338
1339
Month = feb,
1340
1341
Url = {https://arxiv.org/abs/1602.04938}
1342
}
1343
1344
@InProceedings{risi2010evolving,
1345
Title = {Evolving the placement and density of neurons in the hyperneat substrate},
1346
Author = {Risi, Sebastian and Lehman, Joel and Stanley, Kenneth O},
1347
Booktitle = {Conference on Genetic and evolutionary computation},
1348
Year = {2010},
1349
Number = {12},
1350
Organization = {ACM},
1351
Pages = {563--570}
1352
}
1353
1354
@InProceedings{ronneberger2015u,
1355
Title = {U-net: {Convolutional} networks for biomedical image segmentation},
1356
Author = {Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
1357
Booktitle = {International Conference on Medical Image Computing and Computer-Assisted Intervention},
1358
Year = {2015},
1359
Organization = {Springer},
1360
Pages = {234--241},
1361
1362
Url = {https://arxiv.org/abs/1505.04597}
1363
}
1364
1365
@Article{ruder2016overview,
1366
Title = {An overview of gradient descent optimization algorithms},
1367
Author = {Ruder, Sebastian},
1368
Journal = {arXiv preprint arXiv:1609.04747},
1369
Year = {2016},
1370
1371
Month = sep,
1372
1373
Url = {https://arxiv.org/abs/1609.04747}
1374
}
1375
1376
@Article{russakovsky2014imagenet,
1377
Title = {Imagenet large scale visual recognition challenge},
1378
Author = {Russakovsky, Olga and Deng, Jia and Su, Hao and Krause, Jonathan and Satheesh, Sanjeev and Ma, Sean and Huang, Zhiheng and Karpathy, Andrej and Khosla, Aditya and Bernstein, Michael and Berg, Alexander C. and Fei-Fei, Li},
1379
Journal = {arXiv preprint arXiv:1409.0575},
1380
Year = {2014},
1381
1382
Month = sep,
1383
Number = {3},
1384
Pages = {211--252},
1385
Volume = {115},
1386
1387
Publisher = {Springer},
1388
Url = {https://arxiv.org/abs/1409.0575}
1389
}
1390
1391
@Article{saxe2013exact,
1392
Title = {Exact solutions to the nonlinear dynamics of learning in deep linear neural networks},
1393
Author = {Saxe, Andrew M and McClelland, James L and Ganguli, Surya},
1394
Journal = {arXiv preprint arXiv:1312.6120},
1395
Year = {2013},
1396
1397
Month = dec,
1398
1399
Url = {https://arxiv.org/abs/1312.6120}
1400
}
1401
1402
@Article{saxena2016convolutional,
1403
Title = {Convolutional Neural Fabrics},
1404
Author = {Saxena, Shreyas and Verbeek, Jakob},
1405
Journal = {arXiv preprint arXiv:1606.02492},
1406
Year = {2016},
1407
1408
Url = {https://arxiv.org/abs/1606.02492}
1409
}
1410
1411
@InProceedings{schroff2015facenet,
1412
Title = {Facenet: {A} unified embedding for face recognition and clustering},
1413
Author = {Schroff, Florian and Kalenichenko, Dmitry and Philbin, James},
1414
Booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
1415
Year = {2015},
1416
Month = mar,
1417
Organization = {IEEE},
1418
Pages = {815--823},
1419
1420
Url = {https://arxiv.org/abs/1503.03832}
1421
}
1422
1423
@InProceedings{senior2013empirical,
1424
Title = {An empirical study of learning rates in deep neural networks for speech recognition},
1425
Author = {Senior, Andrew and Heigold, Georg and Yang, Ke and others},
1426
Booktitle = {International Conference on Acoustics, Speech and Signal Processing},
1427
Year = {2013},
1428
Organization = {IEEE},
1429
Pages = {6724--6728},
1430
1431
Url = {http://ieeexplore.ieee.org/document/6638963/?arnumber=6638963}
1432
}
1433
1434
@InProceedings{sermanet2012convolutional,
1435
Title = {Convolutional neural networks applied to house numbers digit classification},
1436
Author = {Sermanet, Pierre and Chintala, Soumith and LeCun, Yann},
1437
Booktitle = {International Conference on Pattern Recognition (ICPR)},
1438
Year = {2012},
1439
Month = apr,
1440
Number = {21},
1441
Organization = {IEEE},
1442
Pages = {3288--3291},
1443
1444
Url = {https://arxiv.org/abs/1204.3968}
1445
}
1446
1447
@Article{sermanet2013overfeat,
1448
Title = {Overfeat: {Integrated} recognition, localization and detection using convolutional networks},
1449
Author = {Sermanet, Pierre and Eigen, David and Zhang, Xiang and Mathieu, Micha{\"e}l and Fergus, Rob and LeCun, Yann},
1450
Journal = {arXiv preprint arXiv:1312.6229},
1451
Year = {2013},
1452
1453
Month = feb,
1454
1455
Url = {https://arxiv.org/abs/1312.6229v4}
1456
}
1457
1458
@InProceedings{6033589,
1459
Title = {Traffic sign recognition with multi-scale Convolutional Networks},
1460
Author = {P. Sermanet and Y. LeCun},
1461
Booktitle = {International Joint Conference on Neural Networks (IJCNN)},
1462
Year = {2011},
1463
Month = jul,
1464
Pages = {2809-2813},
1465
1466
Doi = {10.1109/IJCNN.2011.6033589},
1467
ISSN = {2161-4393},
1468
Keywords = {computer vision;image classification;image colour analysis;traffic engineering computing;GTSRB competition;HOG;SIFT;greyscale images;hand-crafted features;hierarchy learning;multiscale convolutional network;multistage architecture;traffic sign classification;traffic sign recognition;vision approach;Accuracy;Color;Computer architecture;Feature extraction;Image color analysis;Neural networks;Training},
1469
Url = {http://ieeexplore.ieee.org/document/6033589/}
1470
}
1471
1472
@Article{shin2016deep,
1473
Title = {Deep convolutional neural networks for computer-aided detection: {CNN} architectures, dataset characteristics and transfer learning},
1474
Author = {Shin, Hoo-Chang and Roth, Holger R and Gao, Mingchen and Lu, Le and Xu, Ziyue and Nogues, Isabella and Yao, Jianhua and Mollura, Daniel and Summers, Ronald M},
1475
Journal = {IEEE transactions on medical imaging},
1476
Year = {2016},
1477
1478
Month = feb,
1479
Number = {5},
1480
Pages = {1285--1298},
1481
Volume = {35},
1482
1483
Publisher = {IEEE},
1484
Url = {http://ieeexplore.ieee.org/document/7404017/?arnumber=7404017}
1485
}
1486
1487
@Article{simonyan2013deep,
1488
Title = {Deep inside convolutional networks: {Visualising} image classification models and saliency maps},
1489
Author = {Simonyan, Karen and Vedaldi, Andrea and Zisserman, Andrew},
1490
Journal = {arXiv preprint arXiv:1312.6034},
1491
Year = {2013},
1492
1493
Month = dec,
1494
1495
Url = {https://arxiv.org/abs/1312.6034}
1496
}
1497
1498
@Article{VGG-16,
1499
Title = {Very deep convolutional networks for large-scale image recognition},
1500
Author = {Simonyan, Karen and Zisserman, Andrew},
1501
Journal = {arXiv preprint arXiv:1409.1556},
1502
Year = {2014},
1503
1504
Month = sep,
1505
1506
Url = {https://arxiv.org/abs/1409.1556}
1507
}
1508
1509
@Article{srivastava2014dropout,
1510
Title = {Dropout: a simple way to prevent neural networks from overfitting.},
1511
Author = {Srivastava, Nitish and Hinton, Geoffrey E and Krizhevsky, Alex and Sutskever, Ilya and Salakhutdinov, Ruslan},
1512
Journal = {Journal of Machine Learning Research},
1513
Year = {2014},
1514
Number = {1},
1515
Pages = {1929--1958},
1516
Volume = {15},
1517
1518
Url = {https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf}
1519
}
1520
1521
@Article{srivastava2014understanding,
1522
Title = {Understanding locally competitive networks},
1523
Author = {Srivastava, Rupesh Kumar and Masci, Jonathan and Gomez, Faustino and Schmidhuber, J{\"u}rgen},
1524
Journal = {arXiv preprint arXiv:1410.1165},
1525
Year = {2014},
1526
1527
Month = oct,
1528
1529
Url = {https://arxiv.org/abs/1410.1165}
1530
}
1531
1532
@Misc{JohannesStallkamp,
1533
Title = {The German Traffic Sign Recognition Benchmark},
1534
1535
Author = {Johannes Stallkamp AND Marc Schlipsing AND Jan Salmen AND Christian Igel},
1536
1537
Url = {http://benchmark.ini.rub.de/?section=gtsrb&subsection=news}
1538
}
1539
1540
@Article{Stallkamp2012GTSRB,
1541
Title = {Man vs. computer: {Benchmarking} machine learning algorithms for traffic sign recognition},
1542
Author = {J. Stallkamp and M. Schlipsing and J. Salmen and C. Igel},
1543
Journal = {Neural Networks},
1544
Year = {2012},
1545
Number = {0},
1546
Pages = { - },
1547
1548
Doi = {10.1016/j.neunet.2012.02.016},
1549
ISSN = {0893-6080},
1550
Keywords = {Traffic sign recognition},
1551
Url = {http://www.sciencedirect.com/science/article/pii/S0893608012000457}
1552
}
1553
1554
@InProceedings{stallkamp2011german,
1555
Title = {The German traffic sign recognition benchmark: a multi-class classification competition},
1556
Author = {Stallkamp, Johannes and Schlipsing, Marc and Salmen, Jan and Igel, Christian},
1557
Booktitle = {International Joint Conference on Neural Networks (IJCNN)},
1558
Year = {2011},
1559
Organization = {IEEE},
1560
Pages = {1453--1460},
1561
1562
Url = {http://ieeexplore.ieee.org/document/6033395/}
1563
}
1564
1565
@Article{stanley2009hypercube,
1566
Title = {A hypercube-based encoding for evolving large-scale neural networks},
1567
Author = {Stanley, Kenneth O and D'Ambrosio, David B and Gauci, Jason},
1568
Journal = {Artificial life},
1569
Year = {2009},
1570
Number = {2},
1571
Pages = {185--212},
1572
Volume = {15},
1573
1574
Publisher = {MIT Press},
1575
Url = {http://ieeexplore.ieee.org/document/6792316/}
1576
}
1577
1578
@Article{stanley2002evolving,
1579
Title = {Evolving neural networks through augmenting topologies},
1580
Author = {Stanley, Kenneth O and Miikkulainen, Risto},
1581
Journal = {Evolutionary computation},
1582
Year = {2002},
1583
Number = {2},
1584
Pages = {99--127},
1585
Volume = {10},
1586
1587
File = {:home/moose/GitHub/informatik-2011/Master/Master-Arbeit/paper/NEAT.pdf:PDF},
1588
Publisher = {MIT Press},
1589
Url = {http://www.mitpressjournals.org/doi/abs/10.1162/106365602320169811}
1590
}
1591
1592
@Article{inception-v4,
1593
Title = {Inception-v4, inception-resnet and the impact of residual connections on learning},
1594
Author = {Szegedy, Christian and Ioffe, Sergey and Vanhoucke, Vincent},
1595
Journal = {arXiv preprint arXiv:1602.07261},
1596
Year = {2016},
1597
1598
Month = feb,
1599
1600
Url = {https://arxiv.org/abs/1602.07261}
1601
}
1602
1603
@InProceedings{GoogleNet-Inception,
1604
Title = {Going deeper with convolutions},
1605
Author = {Szegedy, Christian and Liu, Wei and Jia, Yangqing and Sermanet, Pierre and Reed, Scott and Anguelov, Dragomir and Erhan, Dumitru and Vanhoucke, Vincent and Rabinovich, Andrew},
1606
Booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
1607
Year = {2015},
1608
Month = sep,
1609
Organization = {IEEE},
1610
Pages = {1--9},
1611
1612
Url = {https://arxiv.org/abs/1409.4842}
1613
}
1614
1615
@Article{Inception-v3,
1616
Title = {Rethinking the inception architecture for computer vision},
1617
Author = {Szegedy, Christian and Vanhoucke, Vincent and Ioffe, Sergey and Shlens, Jonathon and Wojna, Zbigniew},
1618
Journal = {arXiv preprint arXiv:1512.00567},
1619
Year = {2015},
1620
1621
Month = dec,
1622
1623
Url = {https://arxiv.org/abs/1512.00567v3}
1624
}
1625
1626
@Article{szegedy2013intriguing,
1627
Title = {Intriguing properties of neural networks},
1628
Author = {Szegedy, Christian and Zaremba, Wojciech and Sutskever, Ilya and Bruna, Joan and Erhan, Dumitru and Goodfellow, Ian and Fergus, Rob},
1629
Journal = {arXiv preprint arXiv:1312.6199},
1630
Year = {2013},
1631
1632
Month = dec,
1633
1634
Url = {https://arxiv.org/abs/1312.6199v4}
1635
}
1636
1637
@Article{thoma2017hasyv2,
1638
Title = {The {HASYv2} dataset},
1639
Author = {Thoma, Martin},
1640
Journal = {arXiv preprint arXiv:1701.08380},
1641
Year = {2017},
1642
1643
Month = jan,
1644
1645
Url = {https://arxiv.org/abs/1701.08380}
1646
}
1647
1648
@Misc{thoma-msthesis-blog,
1649
Title = {Master Thesis (Blog post)},
1650
1651
Author = {Martin Thoma},
1652
Month = apr,
1653
Year = {2017},
1654
1655
Url = {https://martin-thoma.com/msthesis}
1656
}
1657
1658
@Article{Thoma:2016,
1659
Title = {A Survey of Semantic Segmentation},
1660
Author = {Martin Thoma},
1661
Journal = {arXiv preprint arXiv:1602.06541},
1662
Year = {2016},
1663
1664
Month = feb,
1665
1666
Url = {https://arxiv.org/abs/1602.06541}
1667
}
1668
1669
@Misc{Thom2014,
1670
Title = {The {Twiddle} Algorithm},
1671
1672
Author = {Martin Thoma},
1673
Month = sep,
1674
Year = {2014},
1675
1676
Url = {https://martin-thoma.com/twiddle/}
1677
}
1678
1679
@Misc{Thoma:2014,
1680
Title = {On-line Recognition of Handwritten Mathematical Symbols},
1681
1682
Author = {Martin Thoma},
1683
Month = nov,
1684
Year = {2014},
1685
1686
Address = {Karlsruhe, Germany},
1687
Keywords = {handwriting recognition; on-line; machine learning;
1688
artificial neural networks; mathematics; classification;
1689
supervised learning; MLP; multilayer perceptrons; hwrt;
1690
write-math},
1691
School = {Karlsruhe Institute of Technology},
1692
Type = {{B.S. Thesis}},
1693
Url = {http://martin-thoma.com/write-math}
1694
}
1695
1696
@Article{tieleman2012lecture,
1697
Title = {Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude},
1698
Author = {Tieleman, Tijmen and Hinton, Geoffrey},
1699
Journal = {COURSERA: Neural Networks for Machine Learning},
1700
Year = {2012},
1701
Number = {2},
1702
Volume = {4},
1703
1704
Url = {http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf}
1705
}
1706
1707
@Article{verbancsics2013generative,
1708
Title = {Generative neuroevolution for deep learning},
1709
Author = {Verbancsics, Phillip and Harguess, Josh},
1710
Journal = {arXiv preprint arXiv:1312.5355},
1711
Year = {2013},
1712
1713
Month = dec,
1714
1715
Url = {https://arxiv.org/abs/1312.5355}
1716
}
1717
1718
@Article{vorontsov2017orthogonality,
1719
Title = {On orthogonality and learning recurrent networks with long term dependencies},
1720
Author = {Vorontsov, Eugene and Trabelsi, Chiheb and Kadoury, Samuel and Pal, Chris},
1721
Journal = {arXiv preprint arXiv:1702.00071},
1722
Year = {2017},
1723
1724
Month = jan,
1725
1726
Url = {https://arxiv.org/abs/1702.00071}
1727
}
1728
1729
@Article{waibel1989phoneme,
1730
Title = {Phoneme recognition using time-delay neural networks},
1731
Author = {Waibel, Alex and Hanazawa, Toshiyuki and Hinton, Geoffrey and Shikano, Kiyohiro and Lang, Kevin J},
1732
Journal = {IEEE transactions on acoustics, speech, and signal processing},
1733
Year = {1989},
1734
1735
Month = aug,
1736
Number = {3},
1737
Pages = {328--339},
1738
Volume = {37},
1739
1740
Publisher = {IEEE},
1741
Url = {http://ieeexplore.ieee.org/document/21701/}
1742
}
1743
1744
@InProceedings{wan2013regularization,
1745
Title = {Regularization of neural networks using dropconnect},
1746
Author = {Wan, Li and Zeiler, Matthew and Zhang, Sixin and Cun, Yann L and Fergus, Rob},
1747
Booktitle = {International Conference on Machine Learning (ICML)},
1748
Year = {2013},
1749
Number = {30},
1750
Pages = {1058--1066},
1751
1752
Url = {http://www.matthewzeiler.com/pubs/icml2013/icml2013.pdf}
1753
}
1754
1755
@Article{wang2016torontocity,
1756
Title = {{TorontoCity}: Seeing the World with a Million Eyes},
1757
Author = {Wang, Shenlong and Bai, Min and Mattyus, Gellert and Chu, Hang and Luo, Wenjie and Yang, Bin and Liang, Justin and Cheverie, Joel and Fidler, Sanja and Urtasun, Raquel},
1758
Journal = {arXiv preprint arXiv:1612.00423},
1759
Year = {2016}
1760
}
1761
1762
@InBook{Wang2013,
1763
Title = {A Comparative Study of Encoding, Pooling and Normalization Methods for Action Recognition},
1764
Author = {Wang, Xingxing
1765
and Wang, LiMin
1766
and Qiao, Yu},
1767
Editor = {Lee, Kyoung Mu
1768
and Matsushita, Yasuyuki
1769
and Rehg, James M.
1770
and Hu, Zhanyi},
1771
Pages = {572--585},
1772
Publisher = {Springer Berlin Heidelberg},
1773
Year = {2013},
1774
1775
Address = {Berlin, Heidelberg},
1776
Month = nov,
1777
Number = {11},
1778
1779
Booktitle = {Asian Conference on Computer Vision (ACCV)},
1780
Doi = {10.1007/978-3-642-37431-9_44},
1781
ISBN = {978-3-642-37431-9},
1782
Url = {http://dx.doi.org/10.1007/978-3-642-37431-9_44}
1783
}
1784
1785
@Article{williams1992simple,
1786
Title = {Simple statistical gradient-following algorithms for connectionist reinforcement learning},
1787
Author = {Williams, Ronald J},
1788
Journal = {Machine learning},
1789
Year = {1992},
1790
Number = {3-4},
1791
Pages = {229--256},
1792
Volume = {8},
1793
1794
Publisher = {Springer}
1795
}
1796
1797
@Article{wu2015deep,
1798
Title = {Deep image: {Scaling} up image recognition},
1799
Author = {Wu, Ren and Yan, Shengen and Shan, Yi and Dang, Qingqing and Sun, Gang},
1800
Journal = {arXiv preprint arXiv:1501.02876},
1801
Year = {2015},
1802
1803
Month = jul,
1804
Number = {8},
1805
Volume = {7},
1806
1807
Publisher = {Arxiv},
1808
Url = {https://arxiv.org/abs/1501.02876v4}
1809
}
1810
1811
@InProceedings{xiao2012adversarial,
1812
Title = {Adversarial Label Flips Attack on Support Vector Machines.},
1813
Author = {Xiao, Han and Xiao, Huang and Eckert, Claudia},
1814
Booktitle = {ECAI},
1815
Year = {2012},
1816
Pages = {870--875},
1817
1818
Url = {https://www.sec.in.tum.de/assets/Uploads/ecai2.pdf}
1819
}
1820
1821
@InProceedings{xiao2014error,
1822
Title = {Error-driven incremental learning in deep convolutional neural network for large-scale image classification},
1823
Author = {Xiao, Tianjun and Zhang, Jiaxing and Yang, Kuiyuan and Peng, Yuxin and Zhang, Zheng},
1824
Booktitle = {International Conference on Multimedia},
1825
Year = {2014},
1826
Number = {22},
1827
Organization = {ACM},
1828
Pages = {177--186}
1829
}
1830
1831
@Article{xie2016aggregated,
1832
Title = {Aggregated Residual Transformations for Deep Neural Networks},
1833
Author = {Xie, Saining and Girshick, Ross and Doll{\'a}r, Piotr and Tu, Zhuowen and He, Kaiming},
1834
Journal = {arXiv preprint arXiv:1611.05431},
1835
Year = {2016},
1836
1837
Month = nov,
1838
1839
Url = {https://arxiv.org/abs/1611.05431v1}
1840
}
1841
1842
@Article{XinLi2016,
1843
Title = {Adversarial Examples Detection in Deep Networks with Convolutional Filter Statistics},
1844
Author = {Xin Li, Fuxin Li},
1845
Journal = {arXiv preprint arXiv:1612.07767},
1846
Year = {2016},
1847
1848
Month = dec,
1849
1850
Url = {https://arxiv.org/abs/1612.07767}
1851
}
1852
1853
@Article{xu2015empirical,
1854
Title = {Empirical evaluation of rectified activations in convolutional network},
1855
Author = {Xu, Bing and Wang, Naiyan and Chen, Tianqi and Li, Mu},
1856
Journal = {arXiv preprint arXiv:1505.00853},
1857
Year = {2015},
1858
1859
Month = may,
1860
1861
Url = {https://arxiv.org/abs/1505.00853}
1862
}
1863
1864
@Article{xu2011towards,
1865
Title = {Towards optimal one pass large scale learning with averaged stochastic gradient descent},
1866
Author = {Xu, Wei},
1867
Journal = {arXiv preprint arXiv:1107.2490},
1868
Year = {2011},
1869
1870
Month = jul,
1871
1872
File = {:home/moose/GitHub/informatik-2011/Master/Master-Arbeit/paper/towards-optimal-one-pass-lsl-with-a-sgd.pdf:PDF},
1873
Url = {https://arxiv.org/abs/1107.2490}
1874
}
1875
1876
@Misc{YannLeCun1998,
1877
Title = {The {MNIST} database of handwritten digits},
1878
1879
Author = {Yann LeCun, Corinna Cortes, Christopher J.C. Burges},
1880
Year = {1998},
1881
1882
Url = {http://yann.lecun.com/exdb/mnist/}
1883
}
1884
1885
@Article{yu2014visualizing,
1886
Title = {Visualizing and Comparing Convolutional Neural Networks},
1887
Author = {Yu, Wei and Yang, Kuiyuan and Bai, Yalong and Yao, Hongxun and Rui, Yong},
1888
Journal = {arXiv preprint arXiv:1412.6631},
1889
Year = {2014},
1890
1891
Month = dec,
1892
1893
Url = {https://arxiv.org/abs/1412.6631}
1894
}
1895
1896
@Article{zagoruyko2016wide,
1897
Title = {Wide residual networks},
1898
Author = {Zagoruyko, Sergey and Komodakis, Nikos},
1899
Journal = {arXiv preprint arXiv:1605.07146},
1900
Year = {2016},
1901
1902
Month = may,
1903
1904
Url = {https://arxiv.org/abs/1605.07146}
1905
}
1906
1907
@Article{zeiler2012adadelta,
1908
Title = {ADADELTA: an adaptive learning rate method},
1909
Author = {Zeiler, Matthew D},
1910
Journal = {arXiv preprint arXiv:1212.5701},
1911
Year = {2012},
1912
1913
Month = dec,
1914
1915
Url = {https://arxiv.org/abs/1212.5701v1}
1916
}
1917
1918
@InProceedings{zeiler2014visualizing,
1919
Title = {Visualizing and understanding convolutional networks},
1920
Author = {Zeiler, Matthew D and Fergus, Rob},
1921
Booktitle = {European Conference on Computer Vision (ECCV)},
1922
Year = {2014},
1923
Month = nov,
1924
Organization = {Springer},
1925
Pages = {818--833},
1926
1927
Url = {https://arxiv.org/abs/1311.2901}
1928
}
1929
1930
@Article{zeiler2013stochastic,
1931
Title = {Stochastic pooling for regularization of deep convolutional neural networks},
1932
Author = {Zeiler, Matthew D and Fergus, Rob},
1933
Journal = {arXiv preprint arXiv:1301.3557},
1934
Year = {2013},
1935
1936
Month = jan,
1937
1938
Url = {https://arxiv.org/abs/1301.3557v1}
1939
}
1940
1941
@InCollection{zhai2016doubly,
1942
Title = {Doubly Convolutional Neural Networks},
1943
Author = {Zhai, Shuangfei and Cheng, Yu and Zhang, Zhongfei (Mark) and Lu, Weining},
1944
Booktitle = {Advances in Neural Information Processing Systems 29 (NIPS)},
1945
Publisher = {Curran Associates, Inc.},
1946
Year = {2016},
1947
Editor = {D. D. Lee and M. Sugiyama and U. V. Luxburg and I. Guyon and R. Garnett},
1948
Month = oct,
1949
Pages = {1082--1090},
1950
1951
Url = {http://papers.nips.cc/paper/6340-doubly-convolutional-neural-networks.pdf}
1952
}
1953
1954
@Article{zhang2016understanding,
1955
Title = {Understanding deep learning requires rethinking generalization},
1956
Author = {Zhang, Chiyuan and Bengio, Samy and Hardt, Moritz and Recht, Benjamin and Vinyals, Oriol},
1957
Journal = {arXiv preprint arXiv:1611.03530},
1958
Year = {2016},
1959
1960
Month = nov,
1961
1962
Url = {https://arxiv.org/abs/1611.03530}
1963
}
1964
1965
@InProceedings{zhang2014part,
1966
Title = {Part-based {R-CNNs} for fine-grained category detection},
1967
Author = {Zhang, Ning and Donahue, Jeff and Girshick, Ross and Darrell, Trevor},
1968
Booktitle = {European Conference on Computer Vision (ECCV)},
1969
Year = {2014},
1970
Month = jul,
1971
Organization = {Springer},
1972
Pages = {834--849},
1973
1974
Url = {https://arxiv.org/abs/1407.3867}
1975
}
1976
1977
@Article{zhao2015stacked,
1978
Title = {Stacked what-where auto-encoders},
1979
Author = {Zhao, Junbo and Mathieu, Michael and Goroshin, Ross and Lecun, Yann},
1980
Journal = {arXiv preprint arXiv:1506.02351},
1981
Year = {2015},
1982
1983
Month = jun,
1984
1985
Url = {https://arxiv.org/abs/1506.02351v1}
1986
}
1987
1988
@InProceedings{7280459,
1989
Title = {Improving deep neural networks using softplus units},
1990
Author = {Hao Zheng and Zhanlei Yang and Wenju Liu and Jizhong Liang and Yanpeng Li},
1991
Booktitle = {International Joint Conference on Neural Networks (IJCNN)},
1992
Year = {2015},
1993
Month = jul,
1994
Pages = {1-4},
1995
1996
Abstract = {Recently, DNNs have achieved great improvement for acoustic modeling in speech recognition tasks. However, it is difficult to train the models well when the depth grows. One main reason is that when training DNNs with traditional sigmoid units, the derivatives damp sharply while back-propagating between layers, which restrict the depth of model especially with insufficient training data. To deal with this problem, some unbounded activation functions have been proposed to preserve sufficient gradients, including ReLU and softplus. Compared with ReLU, the smoothing and nonzero properties of the in gradient makes softplus-based DNNs perform better in both stabilization and performance. However, softplus-based DNNs have been rarely exploited for the phoneme recognition task. In this paper, we explore the use of softplus units for DNNs in acoustic modeling for context-independent phoneme recognition tasks. The revised RBM pre-training and dropout strategy are also applied to improve the performance of softplus units. Experiments show that, the DNNs with softplus units get significantly performance improvement and uses less epochs to get convergence compared to the DNNs trained with standard sigmoid units and ReLUs.},
1997
Doi = {10.1109/IJCNN.2015.7280459},
1998
ISSN = {2161-4393},
1999
Keywords = {backpropagation;neural nets;speech recognition;DNN data training;ReLU;acoustic modeling;backpropagation;context-independent phoneme recognition tasks;deep neural networks;dropout strategy;revised RBM pre-training;sigmoid units;softplus units;speech recognition tasks;unbounded activation functions;Speech;TIMIT;deep neural networks;dropout;softplus}
2000
}
2001
2002
@Misc{Zhou2016,
2003
Title = {Places2 Download},
2004
2005
Author = {Bolei Zhou},
2006
Year = {2016},
2007
2008
Url = {http://places2.csail.mit.edu/download.html}
2009
}
2010
2011
@Article{zhou2015learning,
2012
Title = {Learning Deep Features for Discriminative Localization},
2013
Author = {Zhou, Bolei and Khosla, Aditya and Lapedriza, Agata and Oliva, Aude and Torralba, Antonio},
2014
Journal = {arXiv preprint arXiv:1512.04150},
2015
Year = {2015},
2016
2017
Month = dec,
2018
2019
Url = {https://arxiv.org/abs/1512.04150}
2020
}
2021
2022
@Article{zhou2016places,
2023
Title = {Places: {An} Image Database for Deep Scene Understanding},
2024
Author = {Zhou, Bolei and Khosla, Aditya and Lapedriza, Agata and Torralba, Antonio and Oliva, Aude},
2025
Journal = {arXiv preprint arXiv:1610.02055},
2026
Year = {2016},
2027
2028
Month = oct,
2029
2030
Url = {https://arxiv.org/abs/1610.02055}
2031
}
2032
2033
@Article{zoph2016neural,
2034
Title = {Neural architecture search with reinforcement learning},
2035
Author = {Zoph, Barret and Le, Quoc V},
2036
Journal = {arXiv preprint arXiv:1611.01578},
2037
Year = {2016},
2038
2039
Month = nov,
2040
2041
Url = {https://arxiv.org/abs/1611.01578}
2042
}
2043
2044
@Misc{Asirra2017,
2045
Title = {Kaggle Cats and Dogs Dataset},
2046
Month = oct,
2047
Year = {2017},
2048
2049
Url = {https://www.microsoft.com/en-us/download/details.aspx?id=54765}
2050
}
2051
2052
@Misc{Lasagne-Dropout,
2053
Title = {Noise layers},
2054
Month = jan,
2055
Year = {2017},
2056
2057
Url = {http://lasagne.readthedocs.io/en/latest/modules/layers/noise.html#lasagne.layers.DropoutLayer}
2058
}
2059
2060
@Misc{tf-dropout,
2061
Title = {tf.nn.dropout},
2062
Month = dec,
2063
Year = {2016},
2064
2065
Url = {https://www.tensorflow.org/api_docs/python/nn/activation_functions_#dropout}
2066
}
2067
2068
@Misc{TF-MNIST-2016,
2069
Title = {{MNIST} For {ML} Beginners},
2070
Month = dec,
2071
Year = {2016},
2072
2073
Url = {https://www.tensorflow.org/tutorials/mnist/beginners/}
2074
}
2075
2076
@Misc{ImageNet-download,
2077
Title = {ImageNet Large Scale Visual Recognition Challenge 2012 ({ILSVRC2012})},
2078
Year = {2012},
2079
2080
Url = {http://www.image-net.org/challenges/LSVRC/2012/nonpub-downloads}
2081
}
2082
2083
@Misc{newbob,
2084
Title = {The training performed by qnstrn},
2085
Month = aug,
2086
Year = {2000},
2087
2088
Url = {http://www1.icsi.berkeley.edu/Speech/faq/nn-train.html}
2089
}
2090
2091
2092