Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132937 views
License: OTHER
1
from skimage.feature import peak_local_max
2
3
centers = []
4
likelihood = []
5
6
for h in hough_response:
7
peaks = peak_local_max(h)
8
centers.extend(peaks)
9
likelihood.extend(h[peaks[:, 0], peaks[:, 1]])
10
11
for i in np.argsort(likelihood)[-3:]:
12
row, column = centers[i]
13
plt.plot(column, row, 'ro')
14
plt.imshow(image)
15
16