Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

📚 The CoCalc Library - books, templates and other resources

132930 views
License: OTHER
1
import tensorflow as tf
2
3
from layers import *
4
5
def encoder(input):
6
# Create a conv network with 3 conv layers and 1 FC layer
7
# Conv 1: filter: [3, 3, 1], stride: [2, 2], relu
8
9
# Conv 2: filter: [3, 3, 8], stride: [2, 2], relu
10
11
# Conv 3: filter: [3, 3, 8], stride: [2, 2], relu
12
13
# FC: output_dim: 100, no non-linearity
14
raise NotImplementedError
15
16
def decoder(input):
17
# Create a deconv network with 1 FC layer and 3 deconv layers
18
# FC: output dim: 128, relu
19
20
# Reshape to [batch_size, 4, 4, 8]
21
22
# Deconv 1: filter: [3, 3, 8], stride: [2, 2], relu
23
24
# Deconv 2: filter: [8, 8, 1], stride: [2, 2], padding: valid, relu
25
26
# Deconv 3: filter: [7, 7, 1], stride: [1, 1], padding: valid, sigmoid
27
raise NotImplementedError
28
29
def autoencoder(input_shape):
30
# Define place holder with input shape
31
32
# Define variable scope for autoencoder
33
with tf.variable_scope('autoencoder') as scope:
34
# Pass input to encoder to obtain encoding
35
36
# Pass encoding into decoder to obtain reconstructed image
37
38
# Return input image (placeholder) and reconstructed image
39
pass
40
41