Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
24 views
#I implemented Corollary 1.3 of \cite{CioabaGu2016}, where an upper bound of $d-1+\frac{2}{d}$ #is shown to be sufficient to guarantee 2-connectivity for simple graphs #We scan d-regular GRAPHS of size n and implement Sebis&Gu bound (Corollary 1.3)#################################################################### n=4 L=list(graphs(n)) print "Total number of graphs:",len(L) for i in range(len(L)): if L[i].is_regular() and L[i].is_connected(): d=L[i].degree(0) A=L[i].adjacency_matrix() spectrum=A.eigenvalues() orderedspectrum=sorted(spectrum) lambda2=orderedspectrum[n-2] if d%2==0 and lambda2<(d-2+sqrt(d^2+12))/2: SebiGubound=(d-2+sqrt(d^2+12))/2 print "SebiGu upper bound on lambda2:", numerical_approx(SebiGubound) print "even degree:", d print "spectrum A:", orderedspectrum print "lambda2:", lambda2 show(L[i]) else: if lambda2<(d-2+sqrt(d^2+8))/2: SebiGubound=(d-2+sqrt(d^2+8))/2 print "SebiGu upper bound on lambda2:", numerical_approx(SebiGubound) print "odd degree:", d print "spectrum A:", orderedspectrum print "lambda2:", lambda2 show(L[i])
Total number of graphs: 11 SebiGu upper bound on lambda2: 2.00000000000000 even degree: 2 spectrum A: [-2, 0, 0, 2] lambda2: 0
d3-based renderer not yet implemented
SebiGu upper bound on lambda2: 2.56155281280883 odd degree: 3 spectrum A: [-1, -1, -1, 3] lambda2: -1
d3-based renderer not yet implemented