Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Estimativa de efetivo para PMMT nas eleições de 2018

3171 views
Kernel: Python 3 (Ubuntu Linux)
import pandas as pd from sklearn.cluster import KMeans import numpy as np
locais = pd.read_excel('Planilha para distribuicao do efetivo.xlsx', sheet_name='dados') locais[:5]
# Crimes eleitorais obteve muito baixa distribuicao, com valores iguais a 0 (maioria), 1 (14), 2 (2) e 3 (1)
aux = 'c_boca_de_urna' aux1 = 'boca_de_urna' kmeans = KMeans(n_clusters=5, random_state=0).fit(locais[aux1].values.reshape(-1,1)) locais[aux] = kmeans.labels_ locais[[aux, aux1]].groupby([aux]).describe()
locais[aux1].hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f4072872ba8>
Image in a Jupyter notebook
aux = 'c_indigenas' aux1 = 'indigenas' kmeans = KMeans(n_clusters=5, random_state=0).fit(locais[aux1].values.reshape(-1,1)) locais[aux] = kmeans.labels_ locais[[aux, aux1]].groupby([aux]).describe()
locais[aux1].hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f4072b00c50>
Image in a Jupyter notebook
aux = 'c_lqtd_aptos' aux1 = 'lqtd_aptos' kmeans = KMeans(n_clusters=5, random_state=0).fit(locais[aux1].values.reshape(-1,1)) locais[aux] = kmeans.labels_ locais[[aux, aux1]].groupby([aux]).describe()
locais[aux1].hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f40729e64e0>
Image in a Jupyter notebook
aux = 'c_roubo' aux1 = 'roubo' kmeans = KMeans(n_clusters=5, random_state=0).fit(locais[aux1].values.reshape(-1,1)) locais[aux] = kmeans.labels_ locais[[aux, aux1]].groupby([aux]).describe()
locais[aux1].hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f40727c1cf8>
Image in a Jupyter notebook
aux = 'c_furto' aux1 = 'furto' kmeans = KMeans(n_clusters=5, random_state=0).fit(locais[aux1].values.reshape(-1,1)) locais[aux] = kmeans.labels_ locais[[aux, aux1]].groupby([aux]).describe()
locais[aux1].hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f40727559b0>
Image in a Jupyter notebook
aux = 'c_desacato' aux1 = 'desacato' kmeans = KMeans(n_clusters=5, random_state=0).fit(locais[aux1].values.reshape(-1,1)) locais[aux] = kmeans.labels_ locais[[aux, aux1]].groupby([aux]).describe()
locais[aux1].hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f40727c19b0>
Image in a Jupyter notebook
aux = 'c_desobediencia' aux1 = 'desobediencia' kmeans = KMeans(n_clusters=5, random_state=0).fit(locais[aux1].values.reshape(-1,1)) locais[aux] = kmeans.labels_ locais[[aux, aux1]].groupby([aux]).describe()
locais[aux1].hist()
<matplotlib.axes._subplots.AxesSubplot at 0x7f40729e64e0>
Image in a Jupyter notebook