Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Jupyter notebook zadacha1.ipynb

54 views
Kernel: Python 3 (Ubuntu Linux)
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
attr_names="""class Alcohol Malic acid Ash Alcalinity of ash Magnesium Total phenols Flavanoids Nonflavanoid phenols Proanthocyanins Color intensity Hue OD280/OD315 of diluted wines """ attr_names = attr_names.split("\n") print(attr_names)
['class', 'Alcohol', 'Malic acid', 'Ash', 'Alcalinity of ash ', 'Magnesium', 'Total phenols', 'Flavanoids', 'Nonflavanoid phenols', 'Proanthocyanins', 'Color intensity', 'Hue', 'OD280/OD315 of diluted wines', '']
iris_df = pd.read_csv('data/wine.data',sep =',',names=attr_names )
print(type(iris_df)) iris_df
<class 'pandas.core.frame.DataFrame'>
WARNING: Some output was deleted.
iris_df.index
RangeIndex(start=0, stop=178, step=1)
X1=iris_df[attr_names[0]].values X2=iris_df[attr_names[1]].values X3=iris_df[attr_names[2]].values X4=iris_df[attr_names[4]].values X5=iris_df[attr_names[5]].values X6=iris_df[attr_names[6]].values X7=iris_df[attr_names[7]].values X8=iris_df[attr_names[8]].values X9=iris_df[attr_names[9]].values X10=iris_df[attr_names[10]].values X11=iris_df[attr_names[11]].values X12=iris_df[attr_names[12]].values
X=np.c_[X1,X2,X3,X4,X5,X6, X7, X8,X9,X10,X11,X12] print(X)
[[ 1. 14.23 1.71 ..., 5.64 1.04 3.92] [ 1. 13.2 1.78 ..., 4.38 1.05 3.4 ] [ 1. 13.16 2.36 ..., 5.68 1.03 3.17] ..., [ 3. 13.27 4.28 ..., 10.2 0.59 1.56] [ 3. 13.17 2.59 ..., 9.3 0.6 1.62] [ 3. 14.13 4.1 ..., 9.2 0.61 1.6 ]]
Y = iris_df["class"].values print(Y)
[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3]
plt.figure(figsize=(5,5)) idx1 = (Y==1) idx2 = (Y==2) plt.scatter(X[:,1][idx1], X[:,2][idx1], s=36 ,c='r',label = 'класс 1') plt.scatter(X[:,1][idx2], X[:,2][idx2], s=36 ,c='b',label = 'класс 2') plt.xlabel(attr_names[1]) plt.ylabel(attr_names[1]) plt.grid(1) plt.show()
Image in a Jupyter notebook
List=[[10,1],[2,3],[4,5],[6,7],[8,9],[10,11],[11,10],[1,2],[3,4], [5,6],[7,8],[9,10]] plt.figure(figsize = (18.0,12.0)) for k in range(0,len(List)): i, j = List[k] idx1 = (Y==1) idx2 = (Y==2) idx3 = (Y==3) plt.subplot( 4, 3, k+1) plt.ylabel(attr_names[i]) plt.xlabel(attr_names[j]) plt.scatter(X[:,j][idx1], X[:, i][idx1], s=64, c='r',label = 'класс 1') plt.scatter(X[:,j][idx2], X[:, i][idx2], s=64, c='b',label = 'класс 2') plt.scatter(X[:,j][idx3], X[:, i][idx3], s=64, c='g',label = 'класс 3') plt.grid(1) plt.tight_layout() plt.show()
Image in a Jupyter notebook