Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
1932 views
% hot topics t-shirt, MSRI 1999, William A. Stein
\documentclass{article}
\newcommand{\Gal}{\mbox{\rm Gal}}
\newcommand{\GL}{\mbox{\rm GL}}
\newcommand{\C}{\mathbf{C}}
\newcommand{\Q}{\mathbf{Q}}
\newcommand{\Qbar}{\overline{\Q}}
\usepackage{graphicx}
\usepackage{psfrag}
\pagestyle{empty}
\textwidth=1.02\textwidth
\begin{document}
\large

\begin{center}
\Large
\sc
Modularity of Elliptic Curves and Beyond\\
\LARGE MSRI 1999
\end{center}
\vspace{3ex}

\noindent{\bf M\normalsize{}ODULARITY THEOREM:} 
{\em Every elliptic curve over~$\mathbf{Q}$ 
is \nobreak{modular}.}\vspace{1ex}\\
{\sc Proof.}
The proof follows a program initiated by Wiles
and Taylor-Wiles. See C.~Breuil, 
B.~Conrad, F.~Diamond, and R.~Taylor,
\emph{On the modularity of elliptic curves over $\mathbf{Q}$}.
\vspace{.5ex}

\begin{center}
\psfrag{2}{$2$}
\psfrag{3}{$3$}
\psfrag{A}{\small{\bf 243A}: $y^2+y=x^3-1$}
\psfrag{B}{\small{\bf 243B}: $y^2+y=x^3+2$}
\psfrag{C}{\small{\bf 243C}: surface}
\psfrag{D}{\small{\bf 243D}: surface}
\psfrag{E}{\small{\bf 243E}: three-fold}
\psfrag{F}{\small{\bf 243F}: three-fold}
\psfrag{G}{\small images of {\bf 81A}: four-fold}
\psfrag{H}{\small images of {\bf 27A} ($y^2 + y = x^3 - 7$): three-fold}
\includegraphics[width=30em, height=55ex]{243.eps}
\vspace{2ex}\\
The Jacobian of $X_0(243)$    
\end{center}

\newpage  
\noindent{\bf A\normalsize{}RTIN'S CONJECTURE:} 
The $L$-series of any continuous representation 
$\Gal(\Qbar/\Q)\rightarrow\GL_n(\C)$ is entire, except 
possibly at~$1$.
\vspace{1ex}

\begin{center}
\includegraphics[width=20em]{icosahedron.eps}
\end{center}

\vspace{-53ex}
\noindent{\sc Results:}
\begin{itemize}
 \item[---] E.~Artin, 
            \emph{{\"U}ber eine neue {A}rt von {L}-Reihen}, 
            Abh.\ Math.\ Sem.\ Univ.\ Hamburg
            \textbf{3} (1924), 89--108. 
 \item[---] J.~Buhler, 
              \emph{Icosahedral Galois representations}, 
               LNM 654, 1978.
 \item[---] K.~Buzzard, M.~Dickinson, N.~Shepherd-Barron, and R.~Taylor, 
              \emph{On icosahedral {A}rtin representations}.
 \item[---] G.~Frey, \emph{On Artin's conjecture for odd $2$-dimensional
              representations}, LNM 1585, 1994.
 \item[---] E.~Hecke, \emph{Eine neue Art von Zetafunktionen und ihre
              Beziehungen zur Verteilung der Primzahlen}, 
              Math.~Z.\ \textbf{6} (1920), 11--51.
 \item[---] R.\thinspace{}P. Langlands, 
              \emph{Base change for $\GL(2)$},
              Princeton University Press, Princeton, 1980.
 \item[---] J.\ Tunnell, 
              \emph{Artin's conjecture for representations of 
              octahedral type}, 
              Bull.\ AMS \textbf{5} (1981), 173--175.
\end{itemize}
\end{document}