# First try - a linearly decreasing learning rate (1/n)foriinrange(1,steps+1):a=np.random.randn()+2# random - N(2,1)ifi>3000:a+=3# random - N(5,1)avgO+=(a-avgO)/i# online averagingavgs[i-1]=avgO## Display the resultspl.plot(avgs);
Out[10]:
In [9]:
# Second try - use a small constant learning rateforiinrange(1,steps+1):a=np.random.randn()+2# random - N(2,1)ifi>3000:a+=3# random - N(5,1)avgO+=(a-avgO)*0.02# online averagingavgs[i-1]=avgO## Display the resultspl.plot(avgs);