Example for traceable data sources in the literature
Mendeley key;Citation;Solvant;Material;Material class;Ceramic class;Constant temperature;Cooling rate;Interface velocity;Wall thickness;Pore width;Wavelength;failure mode;Defects;permeance;Granulo poudre;Solid Loading;Loading (wt%);Additives;Porosity;Relative density;Strength (MPa);Flexural strength;Sample height;Sample diameter;Sample diameter;Sample ratio;Sample shape;Sample volume;Strain rate;Youngs Modulus (MPa);Normalized Young Modulus;green body ?;Compressive strength dense material;Flexural strength dense material;Normalized strength (compression);Normalized strength (flexion);E_dense;Honeycomb_Ashby;Normalized_strength_Elastic_modulus Shen2014a;Shen, P., Xi, J., Fu, Y., Shaga, A., Sun, C., & Jiang, Q. (2014). Preparation of High-Strength Al–Mg–Si/Al2O3 Composites with Lamellar Structures Using Freeze Casting and Pressureless Infiltration Techniques. Acta Metallurgica Sinica (English Letters), 27(5), 944–950. doi:10.1007/s40195-014-0157-9;water;alumina;cera;oxide;;;;10-71;70;15-105;cellular;no;;5;20;;1wt%;69;0,31;7;;10;;5;2;block;;;;;0;2600;400;0,0175;;390;69,71094;0,0179487179487179 Shen2014a;Shen, P., Xi, J., Fu, Y., Shaga, A., Sun, C., & Jiang, Q. (2014). Preparation of High-Strength Al–Mg–Si/Al2O3 Composites with Lamellar Structures Using Freeze Casting and Pressureless Infiltration Techniques. Acta Metallurgica Sinica (English Letters), 27(5), 944–950. doi:10.1007/s40195-014-0157-9;water;alumina;cera;oxide;;;;8-58;35;14-95;cellular;no;;5;25;;1wt%;66;0,34;22;;10;;5;2;block;;;;;0;2600;400;0,055;;390;91,97136;0,0564102564102564 Shen2014a;Shen, P., Xi, J., Fu, Y., Shaga, A., Sun, C., & Jiang, Q. (2014). Preparation of High-Strength Al–Mg–Si/Al2O3 Composites with Lamellar Structures Using Freeze Casting and Pressureless Infiltration Techniques. Acta Metallurgica Sinica (English Letters), 27(5), 944–950. doi:10.1007/s40195-014-0157-9;water;alumina;cera;oxide;;;;10-72;13;10-85;cellular;no;;5;30;;1wt%;59;0,41;64;2;10;;5;2;block;;;;;0;2600;400;0,16;0,005;390;161,27514;0,164102564102564 Yang2014;Yang, H., Ye, F., Liu, Q., Liu, S., Gao, Y., & Liu, L. (2014). A novel silica aerogel/porous Si3N4 composite prepared by freeze casting and sol-gel impregnation with high-performance thermal insulation and wave-transparent. Materials Letters, 10–13. doi:10.1016/j.matlet.2014.10.012;water;silicon nitride+alumina+yttria;cera;covalent;;;;;6;;?;no;;0,5;;;;80,5;0,195;;0,87;35;4;3;11,6666666666667;block;;5;;;0;3200;1000;;0,00087;;; Yang2014;Yang, H., Ye, F., Liu, Q., Liu, S., Gao, Y., & Liu, L. (2014). A novel silica aerogel/porous Si3N4 composite prepared by freeze casting and sol-gel impregnation with high-performance thermal insulation and wave-transparent. Materials Letters, 10–13. doi:10.1016/j.matlet.2014.10.012;water;silicon nitride+alumina+yttria;cera;covalent;;;;;6;;?;no;;0,5;;;;72;0,28;;1,12;;4;3;0;block;;5;;;0;3200;1000;;0,00112;;; Yang2014;Yang, H., Ye, F., Liu, Q., Liu, S., Gao, Y., & Liu, L. (2014). A novel silica aerogel/porous Si3N4 composite prepared by freeze casting and sol-gel impregnation with high-performance thermal insulation and wave-transparent. Materials Letters, 10–13. doi:10.1016/j.matlet.2014.10.012;water;silicon nitride+alumina+yttria;cera;covalent;;;;;6;;?;no;;0,5;;;;80,5;0,195;4,22;;8;;6;1,33333333333333;block;;5;;;;3200;1000;0,00422;;290;12,9018825;0,014551724137931 Yang2014;Yang, H., Ye, F., Liu, Q., Liu, S., Gao, Y., & Liu, L. (2014). A novel silica aerogel/porous Si3N4 composite prepared by freeze casting and sol-gel impregnation with high-performance thermal insulation and wave-transparent. Materials Letters, 10–13. doi:10.1016/j.matlet.2014.10.012;water;silicon nitride+alumina+yttria;cera;covalent;;;;;6;;?;no;;0,5;;;;72;0,28;7,08;;8;;6;1,33333333333333;block;;5;;;;3200;1000;0,00708;;290;38,19648;0,0244137931034483 Vijayan2014b;Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 1–8. doi:10.1016/j.ceramint.2014.09.083;naphtalene+water;alumina;cera;oxide;;;;;11;;cellular;no;;0,34;30;;;65;0,35;28,9;;35;;17;2,05882352941176;cylinder;7,94430242276519;1;1224;0,00313846153846154;0;2600;400;0,07225;;390;100,3275;0,0741025641025641 Vijayan2014b;Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 1–8. doi:10.1016/j.ceramint.2014.09.083;naphtalene+water;alumina;cera;oxide;;;;;9,3;;cellular;no;;0,34;30;;;71,4;0,286;17,8;;35;;17;2,05882352941176;cylinder;7,94430242276519;1;989;0,00253589743589744;0;2600;400;0,0445;;390;54,74115504;0,0456410256410256 Vijayan2014b;Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 1–8. doi:10.1016/j.ceramint.2014.09.083;naphtalene+water;alumina;cera;oxide;;;;;8,3;;cellular;no;;0,34;30;;;73,6;0,264;13,6;;35;;17;2,05882352941176;cylinder;7,94430242276519;1;660;0,00169230769230769;0;2600;400;0,034;;390;43,05540096;0,0348717948717949 Vijayan2014b;Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 1–8. doi:10.1016/j.ceramint.2014.09.083;naphtalene+water;alumina;cera;oxide;;;;;6,6;;cellular;no;;0,34;30;;;76,6;0,234;8,8;;35;;17;2,05882352941176;cylinder;7,94430242276519;1;601;0,00154102564102564;0;2600;400;0,022;;390;29,98219536;0,0225641025641026 Vijayan2014b;Vijayan, S., Narasimman, R., & Prabhakaran, K. (2014). Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics. Ceramics International, 1–8. doi:10.1016/j.ceramint.2014.09.083;naphtalene+water;alumina;cera;oxide;;;;;4,9;;cellular;no;;0,34;30;;;77,9;0,221;7;;35;;17;2,05882352941176;cylinder;7,94430242276519;1;552;0,00141538461538462;0;2600;400;0,0175;;390;25,25763474;0,0179487179487179 Xing2014;Xing, Z., Zhou, W., Du, F., Zhang, L., Li, Z., Zhang, H., & Li, W. (2014). Facile synthesis of hierarchical porous TiO2 ceramics with enhanced photocatalytic performance for micro-polluted pesticide degradation. ACS Applied Materials & Interfaces. doi:10.1021/am5034236;camphene;titania;cera;oxide;;;;;;;?;no;;;;10;;95,1;0,0490000000000001;0,59;;;;;;;;;;;0;700;400;0,001475;;220;0,155296680000001;0,00268181818181818 Xing2014;Xing, Z., Zhou, W., Du, F., Zhang, L., Li, Z., Zhang, H., & Li, W. (2014). Facile synthesis of hierarchical porous TiO2 ceramics with enhanced photocatalytic performance for micro-polluted pesticide degradation. ACS Applied Materials & Interfaces. doi:10.1021/am5034236;camphene;titania;cera;oxide;;;;;;;?;no;;;;15;;93;0,07;0,81;;;;;;;;;;;0;700;400;0,002025;;220;0,45276;0,00368181818181818 Xing2014;Xing, Z., Zhou, W., Du, F., Zhang, L., Li, Z., Zhang, H., & Li, W. (2014). Facile synthesis of hierarchical porous TiO2 ceramics with enhanced photocatalytic performance for micro-polluted pesticide degradation. ACS Applied Materials & Interfaces. doi:10.1021/am5034236;camphene;titania;cera;oxide;;;;;;;?;no;;;;20;;89,6;0,104;0,98;;;;;;;;;;;0;700;400;0,00245;;220;1,48482048;0,00445454545454545 Lee2010b;Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Recycling of Coal Fly Ash for Fabrication of Porous Mullite Composite. Advanced Materials Research, 156-157, 1649–1652. doi:10.4028/www.scientific.net/AMR.156-157.1649;camphene;mullite+alumina;cera;oxide;-196;;;;;;?;no;;;;;;31,1;0,689;80,7;;10;;20;0,5;cylinder;3,14159265358979;1;;;0;1300;320;0,2521875;;;; Lee2010b;Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Recycling of Coal Fly Ash for Fabrication of Porous Mullite Composite. Advanced Materials Research, 156-157, 1649–1652. doi:10.4028/www.scientific.net/AMR.156-157.1649;camphene;mullite+alumina;cera;oxide;-196;;;;;;?;no;;;;;;38,3;0,617;46,5;;10;;20;0,5;cylinder;3,14159265358979;1;;;0;1300;320;0,1453125;;;; Lee2010b;Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Recycling of Coal Fly Ash for Fabrication of Porous Mullite Composite. Advanced Materials Research, 156-157, 1649–1652. doi:10.4028/www.scientific.net/AMR.156-157.1649;camphene;mullite+alumina;cera;oxide;-196;;;9,2;17,5;;?;no;;;;;;51;0,49;46;;10;;20;0,5;cylinder;3,14159265358979;1;;;0;1300;320;0,14375;;;; Lee2010b;Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Recycling of Coal Fly Ash for Fabrication of Porous Mullite Composite. Advanced Materials Research, 156-157, 1649–1652. doi:10.4028/www.scientific.net/AMR.156-157.1649;camphene;mullite+alumina;cera;oxide;-196;;;;;;?;no;;;;;;51,3;0,487;33;;10;;20;0,5;cylinder;3,14159265358979;1;;;0;1300;320;0,103125;;;; Lee2010b;Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Recycling of Coal Fly Ash for Fabrication of Porous Mullite Composite. Advanced Materials Research, 156-157, 1649–1652. doi:10.4028/www.scientific.net/AMR.156-157.1649;camphene;mullite+alumina;cera;oxide;-196;;;7,9;20;;?;no;;;;;;56,4;0,436;22,4;;10;;20;0,5;cylinder;3,14159265358979;1;;;0;1300;320;0,07;;;; Lee2010b;Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Recycling of Coal Fly Ash for Fabrication of Porous Mullite Composite. Advanced Materials Research, 156-157, 1649–1652. doi:10.4028/www.scientific.net/AMR.156-157.1649;camphene;mullite+alumina;cera;oxide;-196;;;;;;?;no;;;;;;60,2;0,398;20,6;;10;;20;0,5;cylinder;3,14159265358979;1;;;0;1300;320;0,064375;;;; Lee2010b;Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Recycling of Coal Fly Ash for Fabrication of Porous Mullite Composite. Advanced Materials Research, 156-157, 1649–1652. doi:10.4028/www.scientific.net/AMR.156-157.1649;camphene;mullite+alumina;cera;oxide;-196;;;;;;?;no;;;;;;70,2;0,298;14,8;;10;;20;0,5;cylinder;3,14159265358979;1;;;0;1300;320;0,04625;;;; Lee2010b;Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Recycling of Coal Fly Ash for Fabrication of Porous Mullite Composite. Advanced Materials Research, 156-157, 1649–1652. doi:10.4028/www.scientific.net/AMR.156-157.1649;camphene;mullite+alumina;cera;oxide;-196;;;24;4,5;;?;no;;;;;;69,2;0,308;10,9;;10;;20;0,5;cylinder;3,14159265358979;1;;;0;1300;320;0,0340625;;;; Lee2010b;Lee, J. M., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Recycling of Coal Fly Ash for Fabrication of Porous Mullite Composite. Advanced Materials Research, 156-157, 1649–1652. doi:10.4028/www.scientific.net/AMR.156-157.1649;camphene;mullite+alumina;cera;oxide;-196;;;;;;?;no;;;;;;79,7;0,203;8,2;;10;;20;0,5;cylinder;3,14159265358979;1;;;0;1300;320;0,025625;;;; Flauder2014;Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of β-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta Biomaterialia. doi:10.1016/j.actbio.2014.08.020;water;TCP;cera;oxide;;;10;11;40;;?;no;;0,3;10;;2wt;81,8;0,182;0,4;;10;;14;0,714285714285714;cylinder;1,539380400259;5;;;0;140;100;0,004;;120;4,34056896;0,00333333333333333 Flauder2014;Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of β-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta Biomaterialia. doi:10.1016/j.actbio.2014.08.020;water;TCP;cera;oxide;;;30;21;27;;?;no;;0,3;20;;2wt;67;0,33;3;;10;;14;0,714285714285714;cylinder;1,539380400259;5;;;0;140;100;0,03;;120;25,87464;0,025 Flauder2014;Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of β-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta Biomaterialia. doi:10.1016/j.actbio.2014.08.020;water;TCP;cera;oxide;;;10;22;15;;?;no;;0,3;30;;2wt;48,9;0,511;17;;10;;14;0,714285714285714;cylinder;1,539380400259;5;;;0;140;100;0,17;;120;96,07163832;0,141666666666667 Flauder2014;Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of β-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta Biomaterialia. doi:10.1016/j.actbio.2014.08.020;water;TCP;cera;oxide;;;30;4,5;15;;?;no;;0,3;10;;2wt;81,8;0,182;1,1;;10;;14;0,714285714285714;cylinder;1,539380400259;5;;;0;140;100;0,011;;120;4,34056896;0,00916666666666667 Flauder2014;Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of β-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta Biomaterialia. doi:10.1016/j.actbio.2014.08.020;water;TCP;cera;oxide;;;10;10;12;;?;no;;0,3;20;;2wt;67;0,33;12;;10;;14;0,714285714285714;cylinder;1,539380400259;5;;;0;140;100;0,12;;120;25,87464;0,1 Flauder2014;Flauder, S., Gbureck, U., & Müller, F. A. (2014). Structure and mechanical properties of β-TCP scaffolds prepared by ice-templating with preset ice front velocities. Acta Biomaterialia. doi:10.1016/j.actbio.2014.08.020;water;TCP;cera;oxide;;;30;13;8;;?;no;;0,3;30;;2wt;48,9;0,511;40;;10;;14;0,714285714285714;cylinder;1,539380400259;5;;;0;140;100;0,4;;120;96,07163832;0,333333333333333 Souza2014a;Souza, D. F., Nunes, E. H. M., Pimenta, D. S., Vasconcelos, D. C. L., Nascimento, J. F., Grava, W., … Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183–195. doi:10.1016/j.matchar.2014.08.009;TBA;alumina;cera;oxide;-196;;;;5;;?;no;yes;1;10;;;69,8;0,302;;21,9;15;;5;3;block;;;;;0;2600;400;;0,05475;390;; Souza2014a;Souza, D. F., Nunes, E. H. M., Pimenta, D. S., Vasconcelos, D. C. L., Nascimento, J. F., Grava, W., … Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183–195. doi:10.1016/j.matchar.2014.08.009;TBA;alumina;cera;oxide;-196;;;;7;;?;no;yes;1;15;;;62,2;0,378;;16,3;15;;5;3;block;;;;;0;2600;400;;0,04075;390;; Souza2014a;Souza, D. F., Nunes, E. H. M., Pimenta, D. S., Vasconcelos, D. C. L., Nascimento, J. F., Grava, W., … Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183–195. doi:10.1016/j.matchar.2014.08.009;TBA;alumina;cera;oxide;-196;;;;15;;?;no;yes;1;20;;;60,3;0,397;;5,6;15;;5;3;block;;;;;0;2600;400;;0,014;390;; Souza2014a;Souza, D. F., Nunes, E. H. M., Pimenta, D. S., Vasconcelos, D. C. L., Nascimento, J. F., Grava, W., … Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183–195. doi:10.1016/j.matchar.2014.08.009;TBA;alumina;cera;oxide;-196;;;;30;;?;no;yes;1;25;;;47,6;0,524;;3,6;15;;5;3;block;;;;;0;2600;400;;0,009;390;; Souza2014a;Souza, D. F., Nunes, E. H. M., Pimenta, D. S., Vasconcelos, D. C. L., Nascimento, J. F., Grava, W., … Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183–195. doi:10.1016/j.matchar.2014.08.009;TBA;alumina;cera;oxide;-196;;;;40;;?;no;yes;1;30;;;42,6;0,574;;0,7;15;;5;3;block;;;;;0;2600;400;;0,00175;390;; Souza2014a;Souza, D. F., Nunes, E. H. M., Pimenta, D. S., Vasconcelos, D. C. L., Nascimento, J. F., Grava, W., … Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183–195. doi:10.1016/j.matchar.2014.08.009;TBA;alumina;cera;oxide;-196;;;;30;;?;no;yes;1;25;;;55,2;0,448;;9,4;15;;5;3;block;;;;;0;2600;400;;0,0235;390;; Souza2014a;Souza, D. F., Nunes, E. H. M., Pimenta, D. S., Vasconcelos, D. C. L., Nascimento, J. F., Grava, W., … Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183–195. doi:10.1016/j.matchar.2014.08.009;TBA;alumina;cera;oxide;-196;;;;30;;?;no;yes;1;25;;;47,8;0,522;;16,4;15;;5;3;block;;;;;0;2600;400;;0,041;390;; Souza2014a;Souza, D. F., Nunes, E. H. M., Pimenta, D. S., Vasconcelos, D. C. L., Nascimento, J. F., Grava, W., … Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183–195. doi:10.1016/j.matchar.2014.08.009;TBA;alumina;cera;oxide;-196;;;;30;;?;no;yes;1;25;;;45,9;0,541;;14,8;15;;5;3;block;;;;;0;2600;400;;0,037;390;; Souza2014a;Souza, D. F., Nunes, E. H. M., Pimenta, D. S., Vasconcelos, D. C. L., Nascimento, J. F., Grava, W., … Vasconcelos, W. L. (2014). Synthesis and structural evaluation of freeze-cast porous alumina. Materials Characterization, 96, 183–195. doi:10.1016/j.matchar.2014.08.009;TBA;alumina;cera;oxide;-196;;;;30;;?;no;yes;1;25;;;37,3;0,627;;14,7;15;;5;3;block;;;;;0;2600;400;;0,03675;390;; Kumar2014a;Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose. doi:10.1007/s10570-014-0339-7;water;PVA, HAP, cellulose;cera;oxide;-40;;;;440;;cellular;no;;;;;;91;0,09;0,4;;12;;7,5;1,6;cylinder;0,530143760293278;0,5;0,32;;0;140;100;0,004;;;; Kumar2014a;Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose. doi:10.1007/s10570-014-0339-7;water;PVA, HAP, cellulose;cera;oxide;-40;;;;415;;cellular;no;;;;;;90;0,1;0,85;;12;;7,5;1,6;cylinder;0,530143760293278;0,5;4,68;;0;140;100;0,0085;;;; Kumar2014a;Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose. doi:10.1007/s10570-014-0339-7;water;PVA, HAP, cellulose;cera;oxide;-40;;;;270;;cellular;no;;;;;;90;0,1;1,39;;12;;7,5;1,6;cylinder;0,530143760293278;0,5;10,67;;0;140;100;0,0139;;;; Kumar2014a;Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose. doi:10.1007/s10570-014-0339-7;water;PVA, HAP, cellulose;cera;oxide;-40;;;;220;;cellular;no;;;;;;89;0,11;1,4;;12;;7,5;1,6;cylinder;0,530143760293278;0,5;10,10;;0;140;100;0,014;;;; Kumar2014a;Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose. doi:10.1007/s10570-014-0339-7;water;PVA, HAP, cellulose;cera;oxide;-40;;;;198;;cellular;no;;;;;;87;0,13;1,48;;12;;7,5;1,6;cylinder;0,530143760293278;0,5;13,4;;0;140;100;0,0148;;;; Kumar2014a;Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose. doi:10.1007/s10570-014-0339-7;water;PVA, HAP, cellulose;cera;oxide;-40;;;;280;;cellular;no;;;;;;89;0,11;1,6;;12;;7,5;1,6;cylinder;0,530143760293278;0,5;14,5;;0;140;100;0,016;;;; Kumar2014a;Kumar, A., Negi, Y. S., Choudhary, V., & Bhardwaj, N. K. (2014). Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose. doi:10.1007/s10570-014-0339-7;water;PVA, HAP, cellulose;cera;oxide;-40;;;;180;;cellular;no;;;;;;87;0,13;2,09;;12;;7,5;1,6;cylinder;0,530143760293278;0,5;16,01;;0;140;100;0,0209;;;; Sadeghpour2014;Sadeghpour, S., Amirjani, A., Hafezi, M., & Zamanian, A. (2014). Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceramics International, 1–8. doi:10.1016/j.ceramint.2014.07.039;water;Baghdadite;cera;oxide;;1;;;50;;?;no;no;;12,5;;;64,3;0,357;1,3;;;;;;cylinder;;1;26,2;;0;;;;;;; Sadeghpour2014;Sadeghpour, S., Amirjani, A., Hafezi, M., & Zamanian, A. (2014). Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceramics International, 1–8. doi:10.1016/j.ceramint.2014.07.039;water;Baghdadite;cera;oxide;;4;;;50;;?;no;no;;12,5;;;63,6;0,364;1,5;;;;;;cylinder;;1;21,8;;0;;;;;;; Sadeghpour2014;Sadeghpour, S., Amirjani, A., Hafezi, M., & Zamanian, A. (2014). Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceramics International, 1–8. doi:10.1016/j.ceramint.2014.07.039;water;Baghdadite;cera;oxide;;1;;;50;;?;no;no;;20;;;58,4;0,416;1,8;;;;;;cylinder;;1;41,3;;0;;;;;;; Sadeghpour2014;Sadeghpour, S., Amirjani, A., Hafezi, M., & Zamanian, A. (2014). Fabrication of a novel nanostructured calcium zirconium silicate scaffolds prepared by a freeze-casting method for bone tissue engineering. Ceramics International, 1–8. doi:10.1016/j.ceramint.2014.07.039;water;Baghdadite;cera;oxide;;4;;;50;;?;no;no;;20;;;58,2;0,418;2,1;;;;;;cylinder;;1;59,8;;0;;;;;;; Hu2014a;Hu, H.-L., Zeng, Y.-P., Xia, Y.-F., Yao, D.-X., & Zuo, K.-H. (2014). High-strength porous Si3N4 ceramics prepared by freeze casting and silicon powder nitridation process. Materials Letters. doi:10.1016/j.matlet.2014.06.176;water;silicon nitride;cera;covalent;-18;;;;45;;?;no;no;1,3;;;;70,51;0,2949;;16,3;36;3;4;9;block;;0,5;;;0;3200;1000;;0,0163;290;44,62452084726; Hu2014a;Hu, H.-L., Zeng, Y.-P., Xia, Y.-F., Yao, D.-X., & Zuo, K.-H. (2014). High-strength porous Si3N4 ceramics prepared by freeze casting and silicon powder nitridation process. Materials Letters. doi:10.1016/j.matlet.2014.06.176;water;silicon nitride;cera;covalent;-18;;;;45;;?;no;no;1,3;;;;69,6;0,304;;18,9;36;3;4;9;block;;0,5;;;0;3200;1000;;0,0189;290;48,88436736; Hu2014a;Hu, H.-L., Zeng, Y.-P., Xia, Y.-F., Yao, D.-X., & Zuo, K.-H. (2014). High-strength porous Si3N4 ceramics prepared by freeze casting and silicon powder nitridation process. Materials Letters. doi:10.1016/j.matlet.2014.06.176;water;silicon nitride+silicon carbide;cera;covalent;-18;;;;45;;?;no;no;1,3;;;;66,7;0,333;;9,6;36;3;4;9;block;;0,5;;;0;3900;550;;0,0174545454545455;;; Hu2014a;Hu, H.-L., Zeng, Y.-P., Xia, Y.-F., Yao, D.-X., & Zuo, K.-H. (2014). High-strength porous Si3N4 ceramics prepared by freeze casting and silicon powder nitridation process. Materials Letters. doi:10.1016/j.matlet.2014.06.176;water;silicon nitride+silicon carbide;cera;covalent;-18;;;;45;;?;no;no;1,3;;;;69,8;0,302;;8,8;36;3;4;9;block;;0,5;;;0;3900;550;;0,016;;; Tang2014a;Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 6–11. doi:10.1016/j.jeurceramsoc.2014.05.040;water;alumina;cera;oxide;-40;;;;90;;?;no;no;1;20;;3wt;24,6;0,754;86;;12;;10;1,2;cylinder;0,942477796076938;0,5;;;0;2600;400;0,215;;390;1003,06688976;0,220512820512821 Tang2014a;Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 6–11. doi:10.1016/j.jeurceramsoc.2014.05.040;water;alumina;cera;oxide;-40;;;;90;;?;no;no;1;20;;3wt;28;0,72;80,9;;12;;10;1,2;cylinder;0,942477796076938;0,5;;;0;2600;400;0,20225;;390;873,40032;0,207435897435897 Tang2014a;Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 6–11. doi:10.1016/j.jeurceramsoc.2014.05.040;water;alumina;cera;oxide;-40;;;;50;;?;no;no;1;30;;3wt;38,5;0,615;33,7;;12;;10;1,2;cylinder;0,942477796076938;0,5;;;0;2600;400;0,08425;;390;544,3035975;0,0864102564102564 Tang2014a;Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 6–11. doi:10.1016/j.jeurceramsoc.2014.05.040;water;alumina;cera;oxide;-40;;;;50;;?;no;no;1;30;;3wt;41,6;0,584;43,6;;12;;10;1,2;cylinder;0,942477796076938;0,5;;;0;2600;400;0,109;;390;466,07348736;0,111794871794872 Tang2014a;Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 6–11. doi:10.1016/j.jeurceramsoc.2014.05.040;water;alumina;cera;oxide;-40;;;;30;;?;no;no;1;40;;3wt;55,8;0,442;19,9;;12;;10;1,2;cylinder;0,942477796076938;0,5;;;0;2600;400;0,04975;;390;202,06107792;0,051025641025641 Tang2014a;Tang, Y., Miao, Q., Qiu, S., Zhao, K., & Hu, L. (2014). Novel freeze-casting fabrication of aligned lamellar porous alumina with a centrosymmetric structure. Journal of the European Ceramic Society, 6–11. doi:10.1016/j.jeurceramsoc.2014.05.040;water;alumina;cera;oxide;-40;;;;30;;?;no;no;1;40;;3wt;57,5;0,425;16;;12;;10;1,2;cylinder;0,942477796076938;0,5;;;0;2600;400;0,04;;390;179,6315625;0,041025641025641 CHENG2014a;CHENG, Z., & ZHAO, K. (2014). Preparation of Hydroxyapatite Scaffolds via Freeze-casting Using Hydrogen Peroxide/Distilled Water. Journal of the Chinese Ceramic Society. Retrieved from http://www.ingentaconnect.com/content/ccs/jccs/2014/00000042/00000005/art00019;water;HAP;cera;oxide;-18;;;;500;;?;?;no;0,7;;;;79,1;0,209;6,1;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0554545454545455;;120;6,57311688;0,0508333333333333 CHENG2014a;CHENG, Z., & ZHAO, K. (2014). Preparation of Hydroxyapatite Scaffolds via Freeze-casting Using Hydrogen Peroxide/Distilled Water. Journal of the Chinese Ceramic Society. Retrieved from http://www.ingentaconnect.com/content/ccs/jccs/2014/00000042/00000005/art00019;water;HAP;cera;oxide;-18;;;;500;;?;?;no;0,7;;;;81,3;0,187;5,1;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0463636363636364;;120;4,70822616;0,0425 CHENG2014a;CHENG, Z., & ZHAO, K. (2014). Preparation of Hydroxyapatite Scaffolds via Freeze-casting Using Hydrogen Peroxide/Distilled Water. Journal of the Chinese Ceramic Society. Retrieved from http://www.ingentaconnect.com/content/ccs/jccs/2014/00000042/00000005/art00019;water;HAP;cera;oxide;-18;;;;500;;?;?;no;0,7;;;;83,9;0,161;4,5;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0409090909090909;;120;3,00476232;0,0375 CHENG2014a;CHENG, Z., & ZHAO, K. (2014). Preparation of Hydroxyapatite Scaffolds via Freeze-casting Using Hydrogen Peroxide/Distilled Water. Journal of the Chinese Ceramic Society. Retrieved from http://www.ingentaconnect.com/content/ccs/jccs/2014/00000042/00000005/art00019;water;HAP;cera;oxide;-18;;;;500;;?;?;no;0,7;;;;88,3;0,117;5,4;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0490909090909091;;120;1,15316136;0,045 Zeng2014a;Zeng, J., Zhang, Y., Zhou, K., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718–722. doi:10.1016/S1003-6326(14)63116-2;water;alumina;cera;oxide;-196;;;;20;;?;no;no;0,5;10;;;74,3;0,257;13,5;;15;;10;1,5;cylinder;1,17809724509617;0,2;;;0;2600;400;0,03375;;390;39,72054762;0,0346153846153846 Zeng2014a;Zeng, J., Zhang, Y., Zhou, K., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718–722. doi:10.1016/S1003-6326(14)63116-2;water/10%ethanol;alumina;cera;oxide;-196;;;;20;;?;no;no;0,5;10;;;73,2;0,268;14,5;;15;;10;1,5;cylinder;1,17809724509617;0,2;;;0;2600;400;0,03625;;390;45,04226688;0,0371794871794872 Zeng2014a;Zeng, J., Zhang, Y., Zhou, K., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718–722. doi:10.1016/S1003-6326(14)63116-2;water/30%ethanol;alumina;cera;oxide;-196;;;;20;;?;no;no;0,5;10;;;68,6;0,314;18,3;;15;;10;1,5;cylinder;1,17809724509617;0,2;;;0;2600;400;0,04575;;390;72,44439696;0,0469230769230769 Zeng2014a;Zeng, J., Zhang, Y., Zhou, K., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718–722. doi:10.1016/S1003-6326(14)63116-2;water/10%propanol;alumina;cera;oxide;-196;;;;20;;?;no;no;0,5;10;;;74,3;0,257;13,6;;15;;10;1,5;cylinder;1,17809724509617;0,2;;;0;2600;400;0,034;;390;39,72054762;0,0348717948717949 Zeng2014a;Zeng, J., Zhang, Y., Zhou, K., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718–722. doi:10.1016/S1003-6326(14)63116-2;water/30%propanol;alumina;cera;oxide;-196;;;;20;;?;no;no;0,5;10;;;73,7;0,263;15;;15;;10;1,5;cylinder;1,17809724509617;0,2;;;0;2600;400;0,0375;;390;42,56798598;0,0384615384615385 Xu2014;Xu, T., & Wang, C.-A. (2014). Piezoelectric Properties of a Pioneering 3-1 Type PZT/Epoxy Composites Based on Freeze-Casting Processing. Journal of the American Ceramic Society, 6, n/a–n/a. doi:10.1111/jace.12793;TBA;PZT;cera;oxide;-78;;;;12;;?;?;no;1,8;20;;;63,6;0,364;47,6;;20;;10;2;cylinder;1,5707963267949;0,5;;;0;500;80;0,595;;76;21,992216064;0,626315789473684 Xu2014;Xu, T., & Wang, C.-A. (2014). Piezoelectric Properties of a Pioneering 3-1 Type PZT/Epoxy Composites Based on Freeze-Casting Processing. Journal of the American Ceramic Society, 6, n/a–n/a. doi:10.1111/jace.12793;TBA;PZT;cera;oxide;-78;;;;12;;?;?;no;1,8;25;;;56;0,44;44,5;;20;;10;2;cylinder;1,5707963267949;0,5;;;0;500;80;0,55625;;76;38,843904;0,585526315789474 Xu2014;Xu, T., & Wang, C.-A. (2014). Piezoelectric Properties of a Pioneering 3-1 Type PZT/Epoxy Composites Based on Freeze-Casting Processing. Journal of the American Ceramic Society, 6, n/a–n/a. doi:10.1111/jace.12793;TBA;PZT;cera;oxide;-78;;;;12;;?;?;no;1,8;30;;;48,7;0,513;69,8;;20;;10;2;cylinder;1,5707963267949;0,5;;;0;500;80;0,8725;;76;61,562597832;0,918421052631579 Xu2014;Xu, T., & Wang, C.-A. (2014). Piezoelectric Properties of a Pioneering 3-1 Type PZT/Epoxy Composites Based on Freeze-Casting Processing. Journal of the American Ceramic Society, 6, n/a–n/a. doi:10.1111/jace.12793;TBA;PZT;cera;oxide;-78;;;;12;;?;?;no;1,8;35;;;43,9;0,561;72,4;;20;;10;2;cylinder;1,5707963267949;0,5;;;0;500;80;0,905;;76;80,510667336;0,952631578947368 Xu2014;Xu, T., & Wang, C.-A. (2014). Piezoelectric Properties of a Pioneering 3-1 Type PZT/Epoxy Composites Based on Freeze-Casting Processing. Journal of the American Ceramic Society, 6, n/a–n/a. doi:10.1111/jace.12793;TBA;PZT;cera;oxide;-78;;;;12;;?;?;no;1,8;40;;;31,7;0,683;91,5;;20;;10;2;cylinder;1,5707963267949;0,5;;;0;500;80;1,14375;;76;145,287066072;1,20394736842105 Kim2014;Kim, D.-H., Kim, K.-L., Chun, H.-H., Kim, T.-W., Park, H.-C., & Yoon, S.-Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International. doi:10.1016/j.ceramint.2014.01.031;TBA;HA/TCP;cera;oxide;;;;;55;;cellular;no;no;;15;;;45,9;0,541;33,1;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;100;0,331;;120;114,00510312;0,275833333333333 Kim2014;Kim, D.-H., Kim, K.-L., Chun, H.-H., Kim, T.-W., Park, H.-C., & Yoon, S.-Y. (2014). In vitro biodegradable and mechanical performance of biphasic calcium phosphate porous scaffolds with unidirectional macro-pore structure. Ceramics International. doi:10.1016/j.ceramint.2014.01.031;TBA;HA/TCP;cera;oxide;;;;;55;;cellular;no;no;;15;;;43;0,57;46,8;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;100;0,468;;120;133,33896;0,39 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;15;;;39,326;0,60674;39,322;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,561742857142857;;111;148,758609724108;0,354252252252252 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;15;;;40,136;0,59864;38,709;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,552985714285714;;115;148,028823467535;0,3366 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;15;;;41,820;0,582;34,854;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,497914285714286;;120;141,79262647104;0,29045 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;15;;;46,089;0,53911;35,995;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,514214285714286;;111;104,353349191023;0,324279279279279 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;15;;;48,603;0,51397;33,814;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,483057142857143;;115;93,6833477459634;0,294034782608696 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;15;;;49,813;0,50187;27,849;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,397842857142857;;120;91,0135813602261;0,232075 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;15;;;50,514;0,49486;27,048;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,3864;;111;80,7088727397685;0,243675675675676 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;15;;;53,059;0,46941;24,771;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,353871428571429;;115;71,3684233547785;0,2154 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;10;;;54,387;0,45613;22,245;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,317785714285714;;111;63,2033561514904;0,200405405405405 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;15;;;56,982;0,43018;22,245;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,317785714285714;;120;57,316959217319;0,185375 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;10;;;57,787;0,42213;20,227;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,288957142857143;;115;51,9024362887419;0,175886956521739 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;10;;;59,364;0,40636;17,276;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,2468;;120;48,3131496812083;0,143966666666667 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;10;;;60,737;0,39263;18,792;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,268457142857143;;111;40,3111018563217;0,169297297297297 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;10;;;62,500;0,375;18,202;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,260028571428571;;115;36,38671875;0,158278260869565 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;10;;;64,524;0,35476;14,967;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,213814285714286;;120;32,1467027977267;0,124725 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;5;;;61,451;0,38549;8,215;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,117357142857143;;111;38,1516722599772;0,074009009009009 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;10;;;62,167;0,37833;10,315;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,147357142857143;;111;36,0650526385656;0,0929279279279279 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;5;;;64,346;0,35654;7,784;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,1112;;111;30,1855441775718;0,0701261261261261 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;10;;;65,210;0,348;9,229;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,131842857142857;;115;29,05443115491;0,0802521739130435 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;5;;;66,999;0,33001;6,700;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,0957142857142857;;120;25,8769923112807;0,0558333333333333 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;10;;;67,995;0,32005;7,161;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,1023;;120;23,60402092809;0,059675 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;5;;;73,434;0,26566;7,440;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,106285714285714;;111;12,4868453816043;0,067027027027027 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;5;;;75,232;0,24768;7,065;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,100928571428571;;115;10,4838767758541;0,0614347826086957 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;5;;;76,346;0,23654;5,605;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,0800714285714286;;120;9,52897689379008;0,0467083333333333 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;5;;;75,042;0,24958;4,439;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,0634142857142857;;111;10,3538905624574;0,039990990990991 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;5;;;77,241;0,22759;3,658;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,0522571428571429;;115;8,13408334812051;0,0318086956521739 Kim2014b;Kim, T. W., Ryu, S. C., Kim, B. K., Yoon, S. Y., & Park, H. C. (2014). Porous hydroxyapatite scaffolds containing calcium phosphate glass-ceramics processed using a freeze/gel-casting technique. Metals and Materials International, 20(1), 135–140. doi:10.1007/s12540-014-1007-z;TBA;HA/glass;glass;oxide;;;;;55;;cellular;no;no;;5;;;79,148;0,20852;2,630;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;250;70;0,0375714285714286;;120;6,52793235134976;0,0219166666666667 Dong2013;Dong, Z., Zhang, Q., & Chen, W. (2013). Fabrication of Highly Porous Chromium Carbide with Multiple Pore Structure. Journal of the American Ceramic Society, 9, n/a–n/a. doi:10.1111/jace.12777;camphene;Chromium Carbide;cera;covalent;;;;;15;;;no;;0,8;10;;;90;0,1;;;;;;;;;;;;0;;;;;;; Dong2013;Dong, Z., Zhang, Q., & Chen, W. (2013). Fabrication of Highly Porous Chromium Carbide with Multiple Pore Structure. Journal of the American Ceramic Society, 9, n/a–n/a. doi:10.1111/jace.12777;camphene;Chromium Carbide;cera;covalent;;;;;;;;no;;0,8;;;;85;0,15;;;;;;;;;;;;0;;;;;;; Dong2013;Dong, Z., Zhang, Q., & Chen, W. (2013). Fabrication of Highly Porous Chromium Carbide with Multiple Pore Structure. Journal of the American Ceramic Society, 9, n/a–n/a. doi:10.1111/jace.12777;camphene;Chromium Carbide;cera;covalent;;;;;6;;;no;;0,8;20;;;83;0,17;;;;;;;;;;;;0;;;;;;; Dong2013;Dong, Z., Zhang, Q., & Chen, W. (2013). Fabrication of Highly Porous Chromium Carbide with Multiple Pore Structure. Journal of the American Ceramic Society, 9, n/a–n/a. doi:10.1111/jace.12777;camphene;Chromium Carbide;cera;covalent;;;;;4;;;no;;0,8;30;;;80;0,2;;;;;;;;;;;;0;;;;;;; Ai;Ai, T., Wang, F., Feng, X., & Zhang, Y. (n.d.). Porous Al2O3 Ceramics Fabricated by Freeze-Casting Using Ice Template, 1–12.;water;alumina;cera;oxide;-30;;;;60;;?;no;no;;;40;;62,92;0,3708;9,3;;;;;;;;0,2;;;0;2600;400;0,02325;;390;119,29851393408;0,0238461538461538 Ai;Ai, T., Wang, F., Feng, X., & Zhang, Y. (n.d.). Porous Al2O3 Ceramics Fabricated by Freeze-Casting Using Ice Template, 1–12.;water;alumina;cera;oxide;-30;;;;60;;?;no;no;;;40;;52,52;0,4748;12,4;;;;;;;;0,2;;;0;2600;400;0,031;;390;250,46554336128;0,0317948717948718 Ai;Ai, T., Wang, F., Feng, X., & Zhang, Y. (n.d.). Porous Al2O3 Ceramics Fabricated by Freeze-Casting Using Ice Template, 1–12.;water;alumina;cera;oxide;-40;;;;60;;?;no;no;;;40;;70,7;0,293;10,8;;;;;;;;0,2;;;0;2600;400;0,027;;390;58,85979138;0,0276923076923077 Farhangdoust2012a;Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2012). Evaluating Initial Content of the Slurry and Cooling Rate on the Microstructural and Mechanical Characteristics of Freeze Casted Hydroxyapatite Macroporous Scaffolds. Key Engineering Materials, 529-530, 147–152. doi:10.4028/www.scientific.net/KEM.529-530.147;water;HAP;cera;oxide;;2;;;41;;?;no;no;;7,5;;;88;0,12;0,3;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;;;0;140;110;0,00272727272727273;;120;1,24416;0,0025 Farhangdoust2012a;Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2012). Evaluating Initial Content of the Slurry and Cooling Rate on the Microstructural and Mechanical Characteristics of Freeze Casted Hydroxyapatite Macroporous Scaffolds. Key Engineering Materials, 529-530, 147–152. doi:10.4028/www.scientific.net/KEM.529-530.147;water;HAP;cera;oxide;;5;;;18;;?;no;no;;11,25;;;;;3,3;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;;;0;140;110;0,03;;120;;0,0275 Farhangdoust2012a;Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2012). Evaluating Initial Content of the Slurry and Cooling Rate on the Microstructural and Mechanical Characteristics of Freeze Casted Hydroxyapatite Macroporous Scaffolds. Key Engineering Materials, 529-530, 147–152. doi:10.4028/www.scientific.net/KEM.529-530.147;water;HAP;cera;oxide;;8;;;16;;?;no;no;;15;;;76;0,24;5,2;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;;;0;140;110;0,0472727272727273;;120;9,95328;0,0433333333333333 Farhangdoust2012a;Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2012). Evaluating Initial Content of the Slurry and Cooling Rate on the Microstructural and Mechanical Characteristics of Freeze Casted Hydroxyapatite Macroporous Scaffolds. Key Engineering Materials, 529-530, 147–152. doi:10.4028/www.scientific.net/KEM.529-530.147;water;HAP;cera;oxide;;11;;;14;;?;no;no;;18,75;;;;;9,4;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;;;0;140;110;0,0854545454545455;;120;;0,0783333333333333 Farhangdoust2012a;Farhangdoust, S., Rabiee, S. M., Zamanian, A., Yasaei, M., Khorami, M., & Hafezi-Ardakani, M. (2012). Evaluating Initial Content of the Slurry and Cooling Rate on the Microstructural and Mechanical Characteristics of Freeze Casted Hydroxyapatite Macroporous Scaffolds. Key Engineering Materials, 529-530, 147–152. doi:10.4028/www.scientific.net/KEM.529-530.147;water;HAP;cera;oxide;;14;;;10;;?;no;no;;22,5;;;66;0,34;17,5;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;;;0;140;110;0,159090909090909;;120;28,29888;0,145833333333333 Naglieri2013;Naglieri, V., Bale, H. a., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia. doi:10.1016/j.actamat.2013.08.006;water;silicon carbide;cera;covalent;;;;;30;;;no;;0,5;17;;;50;0,5;;;;;;;;;;;;0;3900;450;;;410;; Naglieri2013;Naglieri, V., Bale, H. a., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia. doi:10.1016/j.actamat.2013.08.006;water;silicon carbide;cera;covalent;;;;;20;;;no;;0,5;25;;;43;0,57;;;;;;;;;;;;0;3900;450;;;410;; Naglieri2013;Naglieri, V., Bale, H. a., Gludovatz, B., Tomsia, A. P., & Ritchie, R. O. (2013). On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia. doi:10.1016/j.actamat.2013.08.006;water;silicon carbide;cera;covalent;;;;;12;;;no;;0,5;30;;;33;0,67;;;;;;;;;;;;0;3900;450;;;410;; MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;1;;;37;;?;no;no;1,69;15;;4wt;85;0,15;0,3;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,003;;130;2,6325;0,00230769230769231 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;1;;;33;;?;no;no;1,69;15;;4wt;79;0,21;1,6;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,016;;130;7,22358;0,0123076923076923 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;4;;;22;;?;no;no;1,69;15;;4wt;84,5;0,155;0,3;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,003;;130;2,9046225;0,00230769230769231 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;4;;;20;;?;no;no;1,69;15;;4wt;80;0,2;2,6;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,026;;130;6,24;0,02 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;1;;;38;;?;no;no;1,69;15;;4wt;83,8;0,162;0,7;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,007;;148;3,775356864;0,00472972972972973 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;1;;;36;;?;no;no;1,69;15;;4wt;79,2;0,208;1,6;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,016;;148;7,991033856;0,0108108108108108 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;4;;;20;;?;no;no;1,69;15;;4wt;82,6;0,174;0,9;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,009;;148;4,678005312;0,00608108108108108 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;4;;;28;;?;no;no;1,69;15;;4wt;79;0,21;3,3;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,033;;148;8,223768;0,0222972972972973 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;1;;;52;;?;no;no;1,69;15;;4wt;80;0,2;1,4;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,014;;160;7,68;0,00875 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;1;;;50;;?;no;no;1,69;15;;4wt;78,8;0,212;2;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,02;;160;9,14700288;0,0125 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;4;;;32;;?;no;no;1,69;15;;4wt;80,4;0,196;2,2;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,022;;160;7,22835456;0,01375 MohammadHosseinGhzanfari2013;Mohammad Hossein Ghzanfari, S., & Zamanian, A. (2013). Phase transformation, microstructural and mechanical properties of hydroxyapatite/alumina nanocomposite scaffolds produced by freeze casting. Ceramics International. doi:10.1016/j.ceramint.2013.05.096;water;HAP/alumina;cera;oxide;;4;;;31;;?;no;no;1,69;15;;4wt;78,4;0,216;4;;20;;15;1,33333333333333;cylinder;3,53429173528852;0,5;;;0;140;100;0,04;;160;9,67458815999999;0,025 Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;30;;?;?;no;0,2;12;;;68,7;0,313;;7,9;;;;;;;0,1;;;0;1000;70;;0,112857142857143;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;30;;?;?;no;0,2;12;;;59,3;0,407;;9,3;;;;;;;0,1;;;0;1000;70;;0,132857142857143;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;30;;?;?;no;0,2;12;;;54,2;0,458;;12,2;;;;;;;0,1;;;0;1000;70;;0,174285714285714;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;30;;?;?;no;0,2;12;;;52;0,48;;13,3;;;;;;;0,1;;;0;1000;70;;0,19;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;25;;?;?;no;0,2;18;;;66,3;0,337;;5,5;;;;;;;0,1;;;0;1000;70;;0,0785714285714286;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;25;;?;?;no;0,2;18;;;62;0,38;;5,9;;;;;;;0,1;;;0;1000;70;;0,0842857142857143;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;25;;?;?;no;0,2;18;;;60,4;0,396;;6,9;;;;;;;0,1;;;0;1000;70;;0,0985714285714286;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;25;;?;?;no;0,2;18;;;59,7;0,403;;7,6;;;;;;;0,1;;;0;1000;70;;0,108571428571429;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;20;;?;?;no;0,2;24;;;63;0,37;;3,6;;;;;;;0,1;;;0;1000;70;;0,0514285714285714;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;20;;?;?;no;0,2;24;;;56,9;0,431;;4,6;;;;;;;0,1;;;0;1000;70;;0,0657142857142857;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;20;;?;?;no;0,2;24;;;55,8;0,442;;5,3;;;;;;;0,1;;;0;1000;70;;0,0757142857142857;;; Li2013a;Li, W., Lu, K., & Walz, J. Y. (2013). Effects of Solids Loading on Sintering and Properties of Freeze-Cast Kaolinite-Silica Porous Composites. Journal of the American Ceramic Society, early view. doi:10.1111/jace.12355;water;kaolinite/silica;cera;oxide;;2;;;20;;?;?;no;0,2;24;;;55,3;0,447;;6,5;;;;;;;0,1;;;0;1000;70;;0,0928571428571429;;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;44,974;;;57;0,43;;;;;;;;;;;;1;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;47,521;;;55,2;0,448;;;;;;;;;;;;1;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;50,023;;;53,6;0,464;;;;;;;;;;;;1;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;52,525;;;51,1;0,489;;;;;;;;;;;;1;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;54,981;;;47,6;0,524;;;;;;;;;;;;1;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;57,493;;;45,5;0,545;;;;;;;;;;;;1;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;59,976;;;41,1;0,589;;;;;;;;;;;;1;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;44,967;;;31,4;0,686;;;;;;;;;;;;0;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;47,517;;;28,2;0,718;;;;;;;;;;;;0;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;49,942;;;25,3;0,747;;;;;;;;;;;;0;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;52,473;;;22,1;0,779;;;;;;;;;;;;0;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;54,926;;;19,1;0,809;;;;;;;;;;;;0;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;57,438;;;16,5;0,835;;;;;;;;;;;;0;2600;400;;;390;; Sofie2004;Sofie, S. W., & Dogan, F. (2004). Freeze Casting of Aqueous Alumina Slurries with Glycerol. Journal of the American Ceramic Society, 84(7), 1459–1464. doi:10.1111/j.1151-2916.2001.tb00860.x;water;alumina;cera;oxide;-35;;;;;;;no;;0,37;60,039;;;12,5;0,875;;;;;;;;;;;;0;2600;400;;;390;; Liu2013a;Liu, G., & Button, T. W. (2013). The Effect of Particle Size in Freeze Casting of Porous Alumina-Zirconia Composite. Ceramics International, early view. doi:10.1016/j.ceramint.2013.02.101;water;zirconia;cera;oxide;45;;;;25;;?;?;no;;20;;;70;0,3;4,3;;13;;12;1,08333333333333;cylinder;1,47026536188002;0,2;;;0;3000;800;0,005375;;220;35,64;0,0195454545454545 Liu2013a;Liu, G., & Button, T. W. (2013). The Effect of Particle Size in Freeze Casting of Porous Alumina-Zirconia Composite. Ceramics International, early view. doi:10.1016/j.ceramint.2013.02.101;water;zirconia;cera;oxide;45;;;;20;;?;?;no;0,7;20;;;76;0,24;1,7;;13;;12;1,08333333333333;cylinder;1,47026536188002;0,2;;;0;3000;800;0,002125;;220;18,24768;0,00772727272727273 Liu2013a;Liu, G., & Button, T. W. (2013). The Effect of Particle Size in Freeze Casting of Porous Alumina-Zirconia Composite. Ceramics International, early view. doi:10.1016/j.ceramint.2013.02.101;water;zirconia/alumina;cera;oxide;45;;;;15;;?;?;no;;20;;;74;0,26;6,8;;13;;12;1,08333333333333;cylinder;1,47026536188002;0,2;;;0;2800;600;0,0113333333333333;;;; Liu2013a;Liu, G., & Button, T. W. (2013). The Effect of Particle Size in Freeze Casting of Porous Alumina-Zirconia Composite. Ceramics International, early view. doi:10.1016/j.ceramint.2013.02.101;water;zirconia/alumina;cera;oxide;45;;;;10;;?;?;no;0,7;20;;;79;0,21;1,9;;13;;12;1,08333333333333;cylinder;1,47026536188002;0,2;;;0;2800;600;0,00316666666666667;;;; Liu2013a;Liu, G., & Button, T. W. (2013). The Effect of Particle Size in Freeze Casting of Porous Alumina-Zirconia Composite. Ceramics International, early view. doi:10.1016/j.ceramint.2013.02.101;water;zirconia/alumina;cera;oxide;45;;;;25;;;?;;;11;;;74;0,26;;;;;;;;;;;;0;2800;;;;;; Liu2013a;Liu, G., & Button, T. W. (2013). The Effect of Particle Size in Freeze Casting of Porous Alumina-Zirconia Composite. Ceramics International, early view. doi:10.1016/j.ceramint.2013.02.101;water;zirconia/alumina;cera;oxide;45;;;;20;;;?;;;16;;;66,8;0,332;;;;;;;;;;;;0;2800;;;;;; Liu2013a;Liu, G., & Button, T. W. (2013). The Effect of Particle Size in Freeze Casting of Porous Alumina-Zirconia Composite. Ceramics International, early view. doi:10.1016/j.ceramint.2013.02.101;water;zirconia/alumina;cera;oxide;45;;;;15;;;?;;;22;;;50;0,5;;;;;;;;;;;;0;2800;;;;;; Liu2013a;Liu, G., & Button, T. W. (2013). The Effect of Particle Size in Freeze Casting of Porous Alumina-Zirconia Composite. Ceramics International, early view. doi:10.1016/j.ceramint.2013.02.101;water;zirconia/alumina;cera;oxide;45;;;;10;;;?;;;30;;;35;0,65;;;;;;;;;;;;0;2800;;;;;; Xing2013;Xing, Z., Li, J., Wang, Q., Zhou, W., Tian, G., Pan, K., … Fu, H. (2013). A Floating Porous Crystalline TiO 2 Ceramic with Enhanced Photocatalytic Performance for Wastewater Decontamination. European Journal of Inorganic Chemistry, early view. doi:10.1002/ejic.201201494;camphene;titania;cera;oxide;20;;;;;;?;no;no;;;15;;98,1;0,0190000000000001;0,3;;2;8;8;0,25;block;;0,2;;;0;700;400;0,00075;;220;0,00905388000000008;0,00136363636363636 Xing2013;Xing, Z., Li, J., Wang, Q., Zhou, W., Tian, G., Pan, K., … Fu, H. (2013). A Floating Porous Crystalline TiO 2 Ceramic with Enhanced Photocatalytic Performance for Wastewater Decontamination. European Journal of Inorganic Chemistry, early view. doi:10.1002/ejic.201201494;camphene;titania;cera;oxide;20;;;;;;?;no;no;;;15;;93,4;0,0659999999999999;0,8;;2;8;8;0,25;block;;0,2;;;0;700;400;0,002;;220;0,379494719999999;0,00363636363636364 Xing2013;Xing, Z., Li, J., Wang, Q., Zhou, W., Tian, G., Pan, K., … Fu, H. (2013). A Floating Porous Crystalline TiO 2 Ceramic with Enhanced Photocatalytic Performance for Wastewater Decontamination. European Journal of Inorganic Chemistry, early view. doi:10.1002/ejic.201201494;camphene;titania;cera;oxide;20;;;;;;?;no;no;;;15;;87,5;0,125;1,2;;2;8;8;0,25;block;;0,2;;;0;700;400;0,003;;220;2,578125;0,00545454545454545 Xing2013;Xing, Z., Li, J., Wang, Q., Zhou, W., Tian, G., Pan, K., … Fu, H. (2013). A Floating Porous Crystalline TiO 2 Ceramic with Enhanced Photocatalytic Performance for Wastewater Decontamination. European Journal of Inorganic Chemistry, early view. doi:10.1002/ejic.201201494;camphene;titania;cera;oxide;20;;;;;;?;no;no;;;15;;80;0,2;1,8;;2;8;8;0,25;block;;0,2;;;0;700;400;0,0045;;220;10,56;0,00818181818181818 Landi2013;Landi, E., Sciti, D., Melandri, C., & Medri, V. (2013). Ice templating of ZrB2 porous architectures. Journal of the European Ceramic Society, 1–9. doi:10.1016/j.jeurceramsoc.2013.01.037;water;ZrB2;cera;covalent;;;;40-300;70;;cellular;no;no;2,8;35;;;57;0,43;18,4;;10;;13;0,769230769230769;cylinder;1,32732289614169;1;;;0;3000;100;0,184;;;; Landi2013;Landi, E., Sciti, D., Melandri, C., & Medri, V. (2013). Ice templating of ZrB2 porous architectures. Journal of the European Ceramic Society, 1–9. doi:10.1016/j.jeurceramsoc.2013.01.037;water;ZrB2;cera;covalent;;;;30-100;45;;cellular;no;no;2,8;45;;;48;0,52;23,5;;10;;13;0,769230769230769;cylinder;1,32732289614169;1;;;0;3000;100;0,235;;;; Landi2013;Landi, E., Sciti, D., Melandri, C., & Medri, V. (2013). Ice templating of ZrB2 porous architectures. Journal of the European Ceramic Society, 1–9. doi:10.1016/j.jeurceramsoc.2013.01.037;water;ZrB2;cera;covalent;;;;40-80;35;;cellular;no;no;2,8;35;;;57;0,43;59,7;;10;;13;0,769230769230769;cylinder;1,32732289614169;1;;;0;3000;100;0,597;;;; Landi2013;Landi, E., Sciti, D., Melandri, C., & Medri, V. (2013). Ice templating of ZrB2 porous architectures. Journal of the European Ceramic Society, 1–9. doi:10.1016/j.jeurceramsoc.2013.01.037;water;ZrB2;cera;covalent;;;;15-30;25;;cellular;no;no;2,8;45;;;48;0,52;67,8;;10;;13;0,769230769230769;cylinder;1,32732289614169;1;;;0;3000;100;0,678;;;; Zhang2013a;Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340–346. doi:10.1016/j.msec.2012.08.048;water;HAP;cera;oxide;-196;;;;30;;brittle/cellular;yes;no;1;20;;;81;0,19;0,9;;13;;9;1,44444444444444;cylinder;0,827024266057513;0,2;;;0;140;110;0,00818181818181818;;120;4,93848;0,0075 Zhang2013a;Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340–346. doi:10.1016/j.msec.2012.08.048;water;HAP;cera;oxide;-196;;;;30;;brittle/cellular;no;no;1;20;;;68;0,32;2,4;;13;;9;1,44444444444444;cylinder;0,827024266057513;0,2;;;0;140;110;0,0218181818181818;;120;23,59296;0,02 Zhang2013a;Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340–346. doi:10.1016/j.msec.2012.08.048;water;HAP;cera;oxide;-196;;;;30;;brittle/cellular;no;no;1;20;;;71;0,29;1,9;;13;;9;1,44444444444444;cylinder;0,827024266057513;0,2;;;0;140;110;0,0172727272727273;;120;17,56008;0,0158333333333333 Zhang2013a;Zhang, Y., Zhou, K., Bao, Y., & Zhang, D. (2013). Effects of rheological properties on ice-templated porous hydroxyapatite ceramics. Materials Science and Engineering: C, 33(1), 340–346. doi:10.1016/j.msec.2012.08.048;water;HAP;cera;oxide;-196;;;;30;;brittle/cellular;no;no;1;20;;;75;0,25;1,5;;13;;9;1,44444444444444;cylinder;0,827024266057513;0,2;;;0;140;110;0,0136363636363636;;120;11,25;0,0125 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;190;;?;no;no;0,5;10;;;63,5;0,365;48,2;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,0803333333333333;;370;107,9522175;0,13027027027027 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;90;;?;no;no;0,5;15;;;50,8;0,492;86,4;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,144;;370;264,39198336;0,233513513513514 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;40;;?;no;no;0,5;20;;;42,2;0,578;206,2;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,343666666666667;;370;428,68322544;0,557297297297297 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;30;;?;no;no;0,5;25;;;33,1;0,669;308,1;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,5135;;370;664,70864598;0,832702702702703 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;190;;?;no;no;0,5;10;;;61,1;0,389;48,5;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,0808333333333333;;360;127,14595704;0,134722222222222 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;90;;?;no;no;0,5;15;;;49,4;0,506;113;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,188333333333333;;360;279,83710656;0,313888888888889 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;40;;?;no;no;0,5;20;;;40,9;0,591;238;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,396666666666667;;360;445,87815336;0,661111111111111 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;30;;?;no;no;0,5;25;;;31,6;0,684;321;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,535;;360;691,22916864;0,891666666666667 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;190;;?;no;no;0,5;10;;;58;0,42;70;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,116666666666667;;370;164,47536;0,189189189189189 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;90;;?;no;no;0,5;15;;;49,1;0,509;100;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,166666666666667;;370;292,75634838;0,27027027027027 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;40;;?;no;no;0,5;20;;;38,9;0,611;211;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,351666666666667;;370;506,38007082;0,57027027027027 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;30;;?;no;no;0,5;25;;;29,4;0,706;314;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,523333333333333;;370;781,20871152;0,848648648648649 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;190;;?;no;no;0,5;10;;;57,8;0,422;77,6;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,129333333333333;;360;162,32712768;0,215555555555556 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;90;;?;no;no;0,5;15;;;48,1;0,519;128;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,213333333333333;;360;301,96445544;0,355555555555556 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;40;;?;no;no;0,5;20;;;38,4;0,616;313;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,521666666666667;;360;504,88897536;0,869444444444444 Choi2012b;Choi, H., Lee, J., Yoon, S., Kim, B. K., & Park, H. (2012). The microstructure and properties of porous alumina / zirconia composites fabricated by a TBA-based freeze casting route. Journal of Ceramic, 13(6), 762–766.;TBA;alumina/zirconia;cera;oxide;-196;;;;30;;?;no;no;0,5;25;;;28,8;0,712;341;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,568333333333333;;360;779,63931648;0,947222222222222 Hunger2013;Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Structure-property-processing correlations in freeze-cast composite scaffolds. Acta Biomaterialia, 9(5), 6338–6348. doi:10.1016/j.actbio.2013.01.012;water;alumina;cera;oxide;;1;;;31;;?;no;no;;;27w/v;;91,4;0,0859999999999999;0,1;;5;5;5;1;block;;0,05;;;;2600;400;0,00025;;390;1,48837104;0,000256410256410256 Hunger2013;Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Structure-property-processing correlations in freeze-cast composite scaffolds. Acta Biomaterialia, 9(5), 6338–6348. doi:10.1016/j.actbio.2013.01.012;water;alumina;cera;oxide;;10;;;36,1;;?;no;no;;;27w/v;;90,8;0,092;0,244;;5;5;5;1;block;;0,05;2,62;0,00000671794871794872;;2600;400;0,00061;;390;1,82212992;0,000625641025641026 Hunger2013;Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Structure-property-processing correlations in freeze-cast composite scaffolds. Acta Biomaterialia, 9(5), 6338–6348. doi:10.1016/j.actbio.2013.01.012;water;alumina;cera;oxide;;1;;;34,3;;?;no;no;;;27w/v;;90,5;0,095;0,27;;5;5;5;1;block;;0,05;9,63;0,0000246923076923077;;2600;400;0,000675;;390;2,0062575;0,000692307692307692 Hunger2013;Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Structure-property-processing correlations in freeze-cast composite scaffolds. Acta Biomaterialia, 9(5), 6338–6348. doi:10.1016/j.actbio.2013.01.012;water;alumina;cera;oxide;;10;;;27,4;;?;no;no;;;27w/v;;91,8;0,082;0,157;;5;5;5;1;block;;0,05;14,22;0,0000364615384615385;;2600;400;0,0003925;;390;1,29020112;0,000402564102564103 Hunger2013;Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Structure-property-processing correlations in freeze-cast composite scaffolds. Acta Biomaterialia, 9(5), 6338–6348. doi:10.1016/j.actbio.2013.01.012;water;alumina;cera;oxide;;1;;;30,9;;?;no;no;;;27w/v;;90,9;0,0909999999999999;0,346;;5;5;5;1;block;;0,05;7,08;0,0000181538461538462;;2600;400;0,000865;;390;1,76335614;0,000887179487179487 Hunger2013;Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Structure-property-processing correlations in freeze-cast composite scaffolds. Acta Biomaterialia, 9(5), 6338–6348. doi:10.1016/j.actbio.2013.01.012;water;alumina;cera;oxide;;10;;;27,3;;?;no;no;;;27w/v;;90,2;0,098;0,24;;5;5;5;1;block;;0,05;20,05;0,0000514102564102564;;2600;400;0,0006;;390;2,20238928;0,000615384615384615 Zamanian2012;Ishikawa, K., Iwamoto, Y., Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2012). The Effect of Sintering Temperature on the Microstructural and Mechanical Characteristics of Hydroxyapatite Macroporous Scaffolds Prepared via Freeze-Casting. Key Engineering Materials, 529-530, 133–137. doi:10.4028/www.scientific.net/KEM.529-530.133;water;silica;glass;oxide;;8;;;;;?;no;no;;18;;;81,9;0,181;0,4;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;12,11;0,000201833333333333;0;1000;70;0,00571428571428571;;60;2,13470676;0,00666666666666667 Zamanian2012;Ishikawa, K., Iwamoto, Y., Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2012). The Effect of Sintering Temperature on the Microstructural and Mechanical Characteristics of Hydroxyapatite Macroporous Scaffolds Prepared via Freeze-Casting. Key Engineering Materials, 529-530, 133–137. doi:10.4028/www.scientific.net/KEM.529-530.133;water;silica;glass;oxide;;8;;;;;?;no;no;;18;;;82,6;0,174;1,8;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;;;0;1000;70;0,0257142857142857;;60;1,89648864;0,03 Zamanian2012;Ishikawa, K., Iwamoto, Y., Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2012). The Effect of Sintering Temperature on the Microstructural and Mechanical Characteristics of Hydroxyapatite Macroporous Scaffolds Prepared via Freeze-Casting. Key Engineering Materials, 529-530, 133–137. doi:10.4028/www.scientific.net/KEM.529-530.133;water;silica;glass;oxide;;8;;;;;?;no;no;;18;;;81,9;0,181;2,2;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;;;0;1000;70;0,0314285714285714;;60;2,13470676;0,0366666666666667 Zamanian2012;Ishikawa, K., Iwamoto, Y., Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2012). The Effect of Sintering Temperature on the Microstructural and Mechanical Characteristics of Hydroxyapatite Macroporous Scaffolds Prepared via Freeze-Casting. Key Engineering Materials, 529-530, 133–137. doi:10.4028/www.scientific.net/KEM.529-530.133;water;silica;glass;oxide;;8;;;;;?;no;no;;18;;;81,9;0,181;2,7;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;;;0;1000;70;0,0385714285714286;;60;2,13470676;0,045 Zamanian2012;Ishikawa, K., Iwamoto, Y., Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2012). The Effect of Sintering Temperature on the Microstructural and Mechanical Characteristics of Hydroxyapatite Macroporous Scaffolds Prepared via Freeze-Casting. Key Engineering Materials, 529-530, 133–137. doi:10.4028/www.scientific.net/KEM.529-530.133;water;silica;glass;oxide;;8;;;;;?;no;no;;18;;;77,5;0,225;4,5;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;;;0;1000;70;0,0642857142857143;;60;4,100625;0,075 Zamanian2012;Ishikawa, K., Iwamoto, Y., Zamanian, A., Farhangdoust, S., Yasaei, M., Khorami, M., & Abbasabadi, M. (2012). The Effect of Sintering Temperature on the Microstructural and Mechanical Characteristics of Hydroxyapatite Macroporous Scaffolds Prepared via Freeze-Casting. Key Engineering Materials, 529-530, 133–137. doi:10.4028/www.scientific.net/KEM.529-530.133;water;silica;glass;oxide;;8;;;;;?;no;no;;18;;;75,7;0,243;7,6;;20;;15;1,33333333333333;cylinder;3,53429173528852;1;;;0;1000;70;0,108571428571429;;60;5,16560652;0,126666666666667 Flauder2012;Flauder, S., Gbureck, U., Müller, F. a., Ishikawa, K., & Iwamoto, Y. (2012). β-TCP Scaffolds with an Interconnected and Aligned Porosity Fabricated via Ice-Templating. Key Engineering Materials, 529-530, 129–132. doi:10.4028/www.scientific.net/KEM.529-530.129;water;TCP;cera;oxide;;;10;24;16;;?;?;no;0,25;30;;;50,514;0,49486;39,753;;10;;11;0,909090909090909;cylinder;0,950331777710912;;;;0;140;100;0,39753;;120;87,2528353943443;0,331275 Flauder2012;Flauder, S., Gbureck, U., Müller, F. a., Ishikawa, K., & Iwamoto, Y. (2012). β-TCP Scaffolds with an Interconnected and Aligned Porosity Fabricated via Ice-Templating. Key Engineering Materials, 529-530, 129–132. doi:10.4028/www.scientific.net/KEM.529-530.129;water;TCP;cera;oxide;;;20;22;13;;?;?;no;0,25;30;;;50,610;0,494;33,082;;10;;11;0,909090909090909;cylinder;0,950331777710912;;;;0;140;100;0,33082;;120;86,74602337368;0,275683333333333 Flauder2012;Flauder, S., Gbureck, U., Müller, F. a., Ishikawa, K., & Iwamoto, Y. (2012). β-TCP Scaffolds with an Interconnected and Aligned Porosity Fabricated via Ice-Templating. Key Engineering Materials, 529-530, 129–132. doi:10.4028/www.scientific.net/KEM.529-530.129;water;TCP;cera;oxide;;;30;13;8;;?;?;no;0,25;30;;;50,640;0,494;11,333;;10;;11;0,909090909090909;cylinder;0,950331777710912;;;;0;140;100;0,11333;;120;86,58804805632;0,0944416666666667 Flauder2012;Flauder, S., Gbureck, U., Müller, F. a., Ishikawa, K., & Iwamoto, Y. (2012). β-TCP Scaffolds with an Interconnected and Aligned Porosity Fabricated via Ice-Templating. Key Engineering Materials, 529-530, 129–132. doi:10.4028/www.scientific.net/KEM.529-530.129;water;TCP;cera;oxide;;;10;21;27;;?;?;no;0,25;20;;;67,519;0,32481;12,709;;10;;11;0,909090909090909;cylinder;0,950331777710912;;;;0;140;100;0,12709;;120;24,6729268372615;0,105908333333333 Flauder2012;Flauder, S., Gbureck, U., Müller, F. a., Ishikawa, K., & Iwamoto, Y. (2012). β-TCP Scaffolds with an Interconnected and Aligned Porosity Fabricated via Ice-Templating. Key Engineering Materials, 529-530, 129–132. doi:10.4028/www.scientific.net/KEM.529-530.129;water;TCP;cera;oxide;;;20;15;18;;?;?;no;0,25;20;;;67,519;0,32481;8,608;;10;;11;0,909090909090909;cylinder;0,950331777710912;;;;0;140;100;0,08608;;120;24,6729268372615;0,0717333333333333 Flauder2012;Flauder, S., Gbureck, U., Müller, F. a., Ishikawa, K., & Iwamoto, Y. (2012). β-TCP Scaffolds with an Interconnected and Aligned Porosity Fabricated via Ice-Templating. Key Engineering Materials, 529-530, 129–132. doi:10.4028/www.scientific.net/KEM.529-530.129;water;TCP;cera;oxide;;;30;11;12;;?;?;no;0,25;20;;;67,519;0,32481;4,045;;10;;11;0,909090909090909;cylinder;0,950331777710912;;;;0;140;100;0,04045;;120;24,6729268372615;0,0337083333333333 Flauder2012;Flauder, S., Gbureck, U., Müller, F. a., Ishikawa, K., & Iwamoto, Y. (2012). β-TCP Scaffolds with an Interconnected and Aligned Porosity Fabricated via Ice-Templating. Key Engineering Materials, 529-530, 129–132. doi:10.4028/www.scientific.net/KEM.529-530.129;water;TCP;cera;oxide;;;10;11,5;40;;?;?;no;0,25;10;;;81,882;0,18118;1,131;;10;;11;0,909090909090909;cylinder;0,950331777710912;;;;0;140;100;0,01131;;120;4,28216366810304;0,009425 Flauder2012;Flauder, S., Gbureck, U., Müller, F. a., Ishikawa, K., & Iwamoto, Y. (2012). β-TCP Scaffolds with an Interconnected and Aligned Porosity Fabricated via Ice-Templating. Key Engineering Materials, 529-530, 129–132. doi:10.4028/www.scientific.net/KEM.529-530.129;water;TCP;cera;oxide;;;20;9,3;30;;?;?;no;0,25;10;;;81,882;0,18118;0,783;;10;;11;0,909090909090909;cylinder;0,950331777710912;;;;0;140;100;0,00783;;120;4,28216366810304;0,006525 Flauder2012;Flauder, S., Gbureck, U., Müller, F. a., Ishikawa, K., & Iwamoto, Y. (2012). β-TCP Scaffolds with an Interconnected and Aligned Porosity Fabricated via Ice-Templating. Key Engineering Materials, 529-530, 129–132. doi:10.4028/www.scientific.net/KEM.529-530.129;water;TCP;cera;oxide;;;30;4,5;15;;?;?;no;0,25;10;;;81,847;0,18153;0,185;;10;;11;0,909090909090909;cylinder;0,950331777710912;;;;0;140;100;0,00185;;120;4,30702824065544;0,00154166666666667 Zhang2012d;Zhang, R., Fang, D., Chen, X., Pei, Y., Wang, Z., & Wang, Y. (2013). Microstructure and properties of highly porous Y2SiO5 ceramics produced by a new water-based freeze casting. Materials & Design, 46, 746–750. doi:10.1016/j.matdes.2012.11.020;water;Y2SiO5;cera;oxide;;;;;15;;?;;no;1;20;;;71;0,29;3,34;;35;;21;1,66666666666667;cylinder;12,1226206520396;0,05;;;0;;;;;;; Zhang2012d;Zhang, R., Fang, D., Chen, X., Pei, Y., Wang, Z., & Wang, Y. (2013). Microstructure and properties of highly porous Y2SiO5 ceramics produced by a new water-based freeze casting. Materials & Design, 46, 746–750. doi:10.1016/j.matdes.2012.11.020;water;Y2SiO5;cera;oxide;;;;;15;;?;;no;1;20;;;66;0,34;5,7;;35;;21;1,66666666666667;cylinder;12,1226206520396;0,05;;;;;;;;;; Zhang2012d;Zhang, R., Fang, D., Chen, X., Pei, Y., Wang, Z., & Wang, Y. (2013). Microstructure and properties of highly porous Y2SiO5 ceramics produced by a new water-based freeze casting. Materials & Design, 46, 746–750. doi:10.1016/j.matdes.2012.11.020;water;Y2SiO5;cera;oxide;;;;;15;;?;;no;1;20;;;62;0,38;16,51;;35;;21;1,66666666666667;cylinder;12,1226206520396;0,05;;;0;;;;;;; Hunger2012;Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the Mechanical Behavior of Biomedical Materials, 19, 87–93. doi:10.1016/j.jmbbm.2012.10.013;water;alumina;cera;oxide;;10;;;50;;cellular;;no;;;27w/v;;91,4;0,0859999999999999;0,1;;5;5;5;1;block;;0,05;2,6;0,00000666666666666667;0;2600;400;0,00025;;390;1,48837104;0,000256410256410256 Hunger2012;Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the Mechanical Behavior of Biomedical Materials, 19, 87–93. doi:10.1016/j.jmbbm.2012.10.013;water;alumina;cera;oxide;;10;;;50;;cellular;;no;;;27w/v;;90,8;0,092;0,24;;5;5;5;1;block;;0,05;9,6;0,0000246153846153846;0;2600;400;0,0006;;390;1,82212992;0,000615384615384615 Hunger2012;Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the Mechanical Behavior of Biomedical Materials, 19, 87–93. doi:10.1016/j.jmbbm.2012.10.013;water;alumina;cera;oxide;;10;;;50;;cellular;;no;;;27w/v;;90,5;0,095;0,27;;5;5;5;1;block;;0,05;14,2;0,0000364102564102564;0;2600;400;0,000675;;390;2,0062575;0,000692307692307692 Hunger2012;Hunger, P. M., Donius, A. E., & Wegst, U. G. K. (2013). Platelets self-assemble into porous nacre during freeze casting. Journal of the Mechanical Behavior of Biomedical Materials, 19, 87–93. doi:10.1016/j.jmbbm.2012.10.013;water;alumina;cera;oxide;;10;;;50;;cellular;;no;;;27w/v;;91,5;0,085;0,34;;5;5;5;1;block;;0,05;27,4;0,0000702564102564103;0;2600;400;0,00085;;390;1,4370525;0,000871794871794872 Li2012f;Li, W., Lu, K., & Walz, J. Y. (2012). Fabrication of porous nanocomposites with controllable specific surface area and strength via suspension infiltration. Langmuir, 28(47), 16423–9. doi:10.1021/la303510s;water;alumina/kaolinite;cera;oxide;-196;;;;15;;?;;no;;18;;;70;0,3;5,4;;;;;;;;1;;;0;;;;;;; Hamamoto2012;Hamamoto, K., Fukushima, M., Mamiya, M., Yoshizawa, Y., Akimoto, J., Suzuki, T., & Fujishiro, Y. (2012). Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics, 225, 560–563. doi:10.1016/j.ssi.2012.01.034;water;LiFePO4;cera;oxide;;;;;;;;;;;10;;;88;0,12;;;;;;;;;;;;0;;;;;;; Hamamoto2012;Hamamoto, K., Fukushima, M., Mamiya, M., Yoshizawa, Y., Akimoto, J., Suzuki, T., & Fujishiro, Y. (2012). Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics, 225, 560–563. doi:10.1016/j.ssi.2012.01.034;water;LiFePO4;cera;oxide;-40;;;;250;;;;;;;;;;1;;;;;;;;;;;;;;;;;;; Hamamoto2012;Hamamoto, K., Fukushima, M., Mamiya, M., Yoshizawa, Y., Akimoto, J., Suzuki, T., & Fujishiro, Y. (2012). Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics, 225, 560–563. doi:10.1016/j.ssi.2012.01.034;water;LiFePO4;cera;oxide;-60;;;;140;;;;;;;;;;1;;;;;;;;;;;;;;;;;;; Hamamoto2012;Hamamoto, K., Fukushima, M., Mamiya, M., Yoshizawa, Y., Akimoto, J., Suzuki, T., & Fujishiro, Y. (2012). Morphology control and electrochemical properties of LiFePO4/C composite cathode for lithium ion batteries. Solid State Ionics, 225, 560–563. doi:10.1016/j.ssi.2012.01.034;water;LiFePO4;cera;oxide;-80;;;;70;;;;;;;;;;1;;;;;;;;;;;;;;;;;;; Farhangdoust2012;Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013;water;HAP;cera;oxide;;2;;;30,2;;?;no;no;1,69;15;;;82,6;0,174;1,8;;20;;15;1,33333333333333;;;1;;;0;140;110;0,0163636363636364;;120;3,79297728;0,015 Farhangdoust2012;Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013;water;HAP;cera;oxide;;5;;;25;;?;no;no;1,69;15;;;82;0,18;2,3;;20;;15;1,33333333333333;;;1;;;0;140;110;0,0209090909090909;;120;4,19904;0,0191666666666667 Farhangdoust2012;Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013;water;HAP;cera;oxide;;8;;;16,6;;?;no;no;1,69;15;;;82;0,18;2,6;;20;;15;1,33333333333333;;;1;;;0;140;110;0,0236363636363636;;120;4,19904;0,0216666666666667 Farhangdoust2012;Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013;water;HAP;cera;oxide;;11;;;19,6;;?;no;no;1,69;15;;;77,5;0,225;4,5;;20;;15;1,33333333333333;;;1;;;0;140;110;0,0409090909090909;;120;8,20125;0,0375 Farhangdoust2012;Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013;water;HAP;cera;oxide;;14;;;13,5;;?;no;no;1,69;15;;;75,7;0,243;7,7;;20;;15;1,33333333333333;;;1;;;0;140;110;0,07;;120;10,33121304;0,0641666666666667 Farhangdoust2012;Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013;water;HAP;cera;oxide;;;;;41;;?;no;no;1,69;7,4;;;87,6;0,124;0,5;;20;;15;1,33333333333333;;;1;;;;140;110;0,00454545454545455;;120;1,37276928;0,00416666666666667 Farhangdoust2012;Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013;water;HAP;cera;oxide;;;;;15;;?;no;no;1,69;15;;;76,8;0,232;15;;20;;15;1,33333333333333;;;1;;;;140;110;0,136363636363636;;120;8,99076096;0,125 Farhangdoust2012;Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013;water;HAP;cera;oxide;;;;;9;;?;no;no;1,69;22,5;;;66,7;0,333;17,2;;20;;15;1,33333333333333;;;1;;;;140;110;0,156363636363636;;120;26,58674664;0,143333333333333 Farhangdoust2012;Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013;water;HAP;cera;oxide;;;;;6;;?;no;no;1,69;30;;;56;0,44;33;;20;;15;1,33333333333333;;;1;;;;140;110;0,3;;120;61,33248;0,275 Farhangdoust2012;Farhangdoust, S., Zamanian, A., Yasaei, M., & Khorami, M. (2013). The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds. Materials Science and Engineering: C, 33(1), 453–460. doi:10.1016/j.msec.2012.09.013;water;HAP;cera;oxide;;;;;3;;?;no;no;1,69;37,5;;;45,4;0,546;60;;20;;15;1,33333333333333;;;1;;;;140;110;0,545454545454545;;120;117,19536192;0,5 Li2012d;Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2012). Preparation of porous Y2SiO5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 28(9), 799–802. doi:10.1016/j.ceramint.2012.07.014;TBA;Y2SiO5;cera;oxide;;;;;88;;?;no;no;;10;;;72,2;0,278;3,2;;8;;6;1,33333333333333;cylinder;0,226194671058465;;;;0;;;;;;; Li2012d;Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2012). Preparation of porous Y2SiO5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 28(9), 799–802. doi:10.1016/j.ceramint.2012.07.014;TBA;Y2SiO5;cera;oxide;;;;;66;;?;no;no;;15;;;56,9;0,431;18,6;;8;;6;1,33333333333333;cylinder;0,226194671058465;;;;0;;;;;;; Li2012d;Hou, Z., Liu, J., Du, H., Xu, H., Guo, A., & Wang, M. (2012). Preparation of porous Y2SiO5 ceramics with relatively high compressive strength and ultra-low thermal conductivity by a TBA-based gel-casting method. Ceramics International, 28(9), 799–802. doi:10.1016/j.ceramint.2012.07.014;TBA;Y2SiO5;cera;oxide;;;;;53;;?;no;no;;20;;;44,6;0,554;23,1;;8;;6;1,33333333333333;cylinder;0,226194671058465;;;;0;;;;;;; Xu2012a;Xu, T. T. T., Wang, C. A. C., & Guo, R. (2012). Microstructure and Electrical Properties of Porous PZT Ceramics with Unidirectional Pore Channel Structure Fabricated by Freeze-Casting. Key Engineering Materials, 512-515, 1347–1350. doi:10.4028/www.scientific.net/KEM.512-515.1347;TBA;PZT;cera;oxide;-78;;;;;;;no;;;15,052;;;67,017;0,32983;;;;;;;;;;;;0;500;80;;;;; Xu2012a;Xu, T. T. T., Wang, C. A. C., & Guo, R. (2012). Microstructure and Electrical Properties of Porous PZT Ceramics with Unidirectional Pore Channel Structure Fabricated by Freeze-Casting. Key Engineering Materials, 512-515, 1347–1350. doi:10.4028/www.scientific.net/KEM.512-515.1347;TBA;PZT;cera;oxide;-78;;;;;;;no;;;19,980;;;58,021;0,41979;;;;;;;;;;;;0;500;80;;;;; Xu2012a;Xu, T. T. T., Wang, C. A. C., & Guo, R. (2012). Microstructure and Electrical Properties of Porous PZT Ceramics with Unidirectional Pore Channel Structure Fabricated by Freeze-Casting. Key Engineering Materials, 512-515, 1347–1350. doi:10.4028/www.scientific.net/KEM.512-515.1347;TBA;PZT;cera;oxide;-78;;;;;;;no;;;24,949;;;57,022;0,42978;;;;;;;;;;;;0;500;80;;;;; Xu2012a;Xu, T. T. T., Wang, C. A. C., & Guo, R. (2012). Microstructure and Electrical Properties of Porous PZT Ceramics with Unidirectional Pore Channel Structure Fabricated by Freeze-Casting. Key Engineering Materials, 512-515, 1347–1350. doi:10.4028/www.scientific.net/KEM.512-515.1347;TBA;PZT;cera;oxide;-78;;;;;;;no;;;29,986;;;49,149;0,50851;;;;;;;;;;;;0;500;80;;;;; Xu2012a;Xu, T. T. T., Wang, C. A. C., & Guo, R. (2012). Microstructure and Electrical Properties of Porous PZT Ceramics with Unidirectional Pore Channel Structure Fabricated by Freeze-Casting. Key Engineering Materials, 512-515, 1347–1350. doi:10.4028/www.scientific.net/KEM.512-515.1347;TBA;PZT;cera;oxide;-78;;;;;;;no;;;34,905;;;39,209;0,60791;;;;;;;;;;;;0;500;80;;;;; Xu2012a;Xu, T. T. T., Wang, C. A. C., & Guo, R. (2012). Microstructure and Electrical Properties of Porous PZT Ceramics with Unidirectional Pore Channel Structure Fabricated by Freeze-Casting. Key Engineering Materials, 512-515, 1347–1350. doi:10.4028/www.scientific.net/KEM.512-515.1347;TBA;PZT;cera;oxide;-78;;;;;;;no;;;39,855;;;26,162;0,73838;;;;;;;;;;;;0;500;80;;;;; Hou2012;Hou, Z., Ye, F., Liu, L., & Liu, Q. (2012). Fabrication of gradient porous β-SiAlON ceramics via a camphene-based freeze casting process. Materials Science and Engineering: A, 4, 1–5. doi:10.1016/j.msea.2012.08.094;camphene;SiAlON;cera;oxide;0;;;;35;;cellular;no;no;0,5;10,6;;;71,3;0,287;49,2;;6;6;9;0,666666666666667;block;;0,5;;;0;2500;760;0,0647368421052632;;300;42,5518254;0,164 Hou2012;Hou, Z., Ye, F., Liu, L., & Liu, Q. (2012). Fabrication of gradient porous β-SiAlON ceramics via a camphene-based freeze casting process. Materials Science and Engineering: A, 4, 1–5. doi:10.1016/j.msea.2012.08.094;camphene;SiAlON;cera;oxide;0;;;;15;;brittle;no;no;0,5;23,9;;;47;0,53;168,4;;6;6;9;0,666666666666667;block;;0,5;;;0;2500;760;0,221578947368421;;300;267,9786;0,561333333333333 Hou2012;Hou, Z., Ye, F., Liu, L., & Liu, Q. (2012). Fabrication of gradient porous β-SiAlON ceramics via a camphene-based freeze casting process. Materials Science and Engineering: A, 4, 1–5. doi:10.1016/j.msea.2012.08.094;camphene;SiAlON;cera;oxide;0;;;;6;;brittle;no;no;0,5;32,2;;;36,1;0,639;312,7;;6;6;9;0,666666666666667;block;;0,5;;;0;2500;760;0,411447368421053;;300;469,6508142;1,04233333333333 Jung2013;Jung, H.-D., Yook, S.-W., Jang, T.-S., Li, Y., Kim, H.-E., & Koh, Y.-H. (2013). Dynamic freeze casting for the production of porous titanium (Ti) scaffolds. Materials Science and Engineering: C, 33(1), 59–63. doi:10.1016/j.msec.2012.08.004;camphene;Ti;metal;;44;;;;362;;cellular;no;no;44;15;;;71;0,29;57;;20;;16;1,25;cylinder;4,02123859659494;5;;;0;900;900;0,0633333333333333;;116;16,974744;0,491379310344828 Jung2013;Jung, H.-D., Yook, S.-W., Jang, T.-S., Li, Y., Kim, H.-E., & Koh, Y.-H. (2013). Dynamic freeze casting for the production of porous titanium (Ti) scaffolds. Materials Science and Engineering: C, 33(1), 59–63. doi:10.1016/j.msec.2012.08.004;camphene;Ti;metal;;44;;;;208;;cellular;no;no;44;20;;;60;0,4;122;;20;;16;1,25;cylinder;4,02123859659494;5;;;0;900;900;0,135555555555556;;116;44,544;1,05172413793103 Jung2013;Jung, H.-D., Yook, S.-W., Jang, T.-S., Li, Y., Kim, H.-E., & Koh, Y.-H. (2013). Dynamic freeze casting for the production of porous titanium (Ti) scaffolds. Materials Science and Engineering: C, 33(1), 59–63. doi:10.1016/j.msec.2012.08.004;camphene;Ti;metal;;44;;;;95;;cellular;no;no;44;25;;;52;0,48;183,6;;20;;16;1,25;cylinder;4,02123859659494;5;;;0;900;900;0,204;;116;76,972032;1,58275862068966 Hou2012a;Hou, Z., Ye, F., Liu, L., Liu, Q., & Zhang, H. (2013). Effects of solid content on the phase assemblages, mechanical and dielectric properties of porous α-SiAlON ceramics fabricated by freeze casting. Ceramics International, 39(2), 1075–1079. doi:10.1016/j.ceramint.2012.07.029;camphene;SiAlON;cera;oxide;0;;;;19;;?;no;no;;10;;;64,3;0,357;;72,4;;;;;;;;;;0;2500;760;;0,0952631578947369;;; Hou2012a;Hou, Z., Ye, F., Liu, L., Liu, Q., & Zhang, H. (2013). Effects of solid content on the phase assemblages, mechanical and dielectric properties of porous α-SiAlON ceramics fabricated by freeze casting. Ceramics International, 39(2), 1075–1079. doi:10.1016/j.ceramint.2012.07.029;camphene;SiAlON;cera;oxide;0;;;;9;;?;no;no;;20;;;45,2;0,548;;129,6;;;;;;;;;;0;2500;760;;0,170526315789474;;; Hou2012a;Hou, Z., Ye, F., Liu, L., Liu, Q., & Zhang, H. (2013). Effects of solid content on the phase assemblages, mechanical and dielectric properties of porous α-SiAlON ceramics fabricated by freeze casting. Ceramics International, 39(2), 1075–1079. doi:10.1016/j.ceramint.2012.07.029;camphene;SiAlON;cera;oxide;0;;;;6;;?;no;no;;30;;;23,1;0,769;;190,2;;;;;;;;;;0;2500;760;;0,250263157894737;;; Du2012a;Du, J., Zhang, X., Hong, C., & Han, W. (2013). Microstructure and mechanical properties of ZrB2–SiC porous ceramic by camphene-based freeze casting. Ceramics International, 39(2), 953–957. doi:10.1016/j.ceramint.2012.07.012;camphene;ZRB2/SIC;cera;covalent;5;;;;6,7;;?;no;no;2;20;;;67;0,33;174;;4;4;5;0,8;block;;;;;0;3000;450;0,386666666666667;;415;89,48313;0,419277108433735 Du2012a;Du, J., Zhang, X., Hong, C., & Han, W. (2013). Microstructure and mechanical properties of ZrB2–SiC porous ceramic by camphene-based freeze casting. Ceramics International, 39(2), 953–957. doi:10.1016/j.ceramint.2012.07.012;camphene;ZRB2/SIC;cera;covalent;5;;;;13;;?;no;no;2;25;;;55;0,45;318;;4;4;5;0,8;block;;;;;0;3000;450;0,706666666666667;;415;226,90125;0,766265060240964 Du2012a;Du, J., Zhang, X., Hong, C., & Han, W. (2013). Microstructure and mechanical properties of ZrB2–SiC porous ceramic by camphene-based freeze casting. Ceramics International, 39(2), 953–957. doi:10.1016/j.ceramint.2012.07.012;camphene;ZRB2/SIC;cera;covalent;5;;;;11,6;;?;no;no;2;30;;;43;0,57;366;;4;4;5;0,8;block;;;;;0;3000;450;0,813333333333333;;415;461,13057;0,881927710843374 Zhang2011a;Zhang, Y., Zhou, K., Zhang, X., & Zhang, D. (2011). Porous Hydroxyapatite Ceramics Fabricated by an Ice Templating Process. Chinese Journal of Materials Research, 25(3), 289–294.;water;HAP;cera;oxide;-130;;;;20;;?;no;no;3;15;;;76,3;0,237;1,4;;;;;;;;;;;0;140;110;0,0127272727272727;;120;9,58467816;0,0116666666666667 Zhang2011a;Zhang, Y., Zhou, K., Zhang, X., & Zhang, D. (2011). Porous Hydroxyapatite Ceramics Fabricated by an Ice Templating Process. Chinese Journal of Materials Research, 25(3), 289–294.;water;HAP;cera;oxide;-130;;;;20;;?;no;no;3;25;;;66,8;0,332;1,9;;;;;;;;;;;0;140;110;0,0172727272727273;;120;26,34794496;0,0158333333333333 Zhang2011a;Zhang, Y., Zhou, K., Zhang, X., & Zhang, D. (2011). Porous Hydroxyapatite Ceramics Fabricated by an Ice Templating Process. Chinese Journal of Materials Research, 25(3), 289–294.;water;HAP;cera;oxide;-130;;;;20;;?;no;no;3;35;;;58,1;0,419;3,5;;;;;;;;;;;0;140;110;0,0318181818181818;;120;52,96324248;0,0291666666666667 Zhang2011a;Zhang, Y., Zhou, K., Zhang, X., & Zhang, D. (2011). Porous Hydroxyapatite Ceramics Fabricated by an Ice Templating Process. Chinese Journal of Materials Research, 25(3), 289–294.;water;HAP;cera;oxide;-130;;;;20;;?;no;no;3;45;;;44,2;0,558;5,7;;;;;;;;;;;0;140;110;0,0518181818181818;;120;125,09360064;0,0475 Zhang2012b;Zhang, R., Fang, D., Chen, X., & Pei, Y. (2012). Effect of pre-oxidation on the microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics. Ceramics International, 38(7), 6021–6026. doi:10.1016/j.ceramint.2012.03.056;water;silicon nitride;cera;covalent;;;;;;;?;no;no;2;25;;;62;0,38;;33,5;3;4;35;0,0857142857142857;block;;0,05;;;0;3200;1000;;0,0335;290;; Yook2012;Yook, S.-W., Jung, H.-D., Park, C.-H., Shin, K.-H., Koh, Y.-H., Estrin, Y., & Kim, H.-E. (2012). Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta Biomaterialia, 8(6), 2401–10. doi:10.1016/j.actbio.2012.03.020;camphene;Ti;metal;;3;;;;;;cellular;no;no;20;20;;;51;0,49;303;;;;;;;;;;;0;900;900;0,336666666666667;;116;81,883704;2,61206896551724 Yook2012;Yook, S.-W., Jung, H.-D., Park, C.-H., Shin, K.-H., Koh, Y.-H., Estrin, Y., & Kim, H.-E. (2012). Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta Biomaterialia, 8(6), 2401–10. doi:10.1016/j.actbio.2012.03.020;camphene;Ti;metal;;3;;;;;;cellular;no;no;20;20;;;59;0,41;190;;;;;;;;;;;0;900;900;0,211111111111111;;116;47,969016;1,63793103448276 Yook2012;Yook, S.-W., Jung, H.-D., Park, C.-H., Shin, K.-H., Koh, Y.-H., Estrin, Y., & Kim, H.-E. (2012). Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores. Acta Biomaterialia, 8(6), 2401–10. doi:10.1016/j.actbio.2012.03.020;camphene;Ti;metal;;3;;;;;;cellular;no;no;20;20;;;70;0,3;122;;;;;;;;;;;0;900;900;0,135555555555556;;116;18,792;1,05172413793103 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;10,8;138;148,8;?;no;no;0,6;10;;;63,502;0,36498;48,589;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,0809816666666667;;380;110,851620818622;0,127865789473684 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;10,8;138;148,8;?;no;no;0,6;10;;;61,106;0,38894;48,737;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,0812283333333333;;360;127,087132509325;0,135380555555556 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;10,8;138;148,8;?;no;no;0,6;10;;;60,346;0,39654;57,418;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,0956966666666667;;370;138,424824386146;0,155183783783784 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;10,8;138;148,8;?;no;no;0,6;10;;;58,014;0,41986;78,249;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,130415;;370;164,310939459028;0,211483783783784 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;10,8;138;148,8;?;no;no;0,6;10;;;57,766;0,42234;79,025;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,131708333333333;;360;162,719798548833;0,219513888888889 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;10,8;138;148,8;?;no;no;0,6;10;;;58,070;0,419;71,004;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,11834;;380;168,07744368996;0,186852631578947 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;11,4;70;81,4;?;no;no;0,6;15;;;50,886;0,49114;86,348;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,143913333333333;;380;270,11628287728;0,227231578947368 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;11,4;70;81,4;?;no;no;0,6;15;;;50,886;0,49114;115,911;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,193185;;370;263,007959643668;0,313272972972973 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;11,4;70;81,4;?;no;no;0,6;15;;;49,445;0,50555;112,237;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,187061666666667;;360;279,09116936037;0,311769444444444 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;11,4;70;81,4;?;no;no;0,6;15;;;49,112;0,50888;99,888;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,16648;;380;300,456078565724;0,262863157894737 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;11,4;70;81,4;?;no;no;0,6;15;;;48,169;0,51831;127,944;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,21324;;370;309,116180370004;0,345794594594595 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;11,4;70;81,4;?;no;no;0,6;15;;;50,162;0,49838;165,555;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,275925;;370;274,811429813608;0,447445945945946 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;12,3;40;52,3;?;no;no;0,6;20;;;40,848;0,59152;237,103;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,395171666666667;;360;447,056126466785;0,658619444444444 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;12,3;40;52,3;?;no;no;0,6;20;;;42,192;0,57808;205,527;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,342545;;380;440,452094628495;0,540860526315789 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;12,3;40;52,3;?;no;no;0,6;20;;;42,612;0,57388;240,874;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,401456666666667;;370;419,58141510586;0,651010810810811 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;12,3;40;52,3;?;no;no;0,6;20;;;38,930;0,611;210,656;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,351093333333333;;380;519,30034005804;0,554357894736842 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;12,3;40;52,3;?;no;no;0,6;20;;;38,401;0,61599;313,566;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,52261;;360;504,864387010366;0,871016666666667 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;12,3;40;52,3;?;no;no;0,6;20;;;38,881;0,61119;337,437;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,562395;;370;506,852618128913;0,911991891891892 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;13,7;27;40,7;?;no;no;0,6;25;;;33,114;0,66886;307,201;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,512001666666667;;380;682,24524978896;0,808423684210526 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;13,7;27;40,7;?;no;no;0,6;25;;;32,778;0,67222;321,201;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,535335;;370;674,352952075607;0,868110810810811 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;13,7;27;40,7;?;no;no;0,6;25;;;31,622;0,68378;320,378;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,533963333333333;;360;690,562407627688;0,889938888888889 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;13,7;27;40,7;?;no;no;0,6;25;;;29,411;0,70589;315,054;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,52509;;380;801,947495661949;0,82908947368421 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;13,7;27;40,7;?;no;no;0,6;25;;;28,801;0,71199;340,580;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,567633333333333;;370;801,26220216379;0,920486486486486 Choi2012;Choi, H. J., Yang, T.-Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2012). Porous alumina/zirconia layered composites with unidirectional pore channels processed using a tertiary-butyl alcohol-based freeze casting. Materials Chemistry and Physics, 133(1), 16–20. doi:10.1016/j.matchemphys.2011.12.055;TBA;zirconia/alumina;cera;oxide;-196;;;13,7;27;40,7;?;no;no;0,6;25;;;30,059;0,69941;356,798;;10;;19;0,526315789473684;cylinder;2,83528736986479;0,5;;;0;2800;600;0,594663333333333;;370;759,536216386259;0,964318918918919 Zhang2012a;Zhang, R., Fang, D., Pei, Y., & Zhou, L. (2012). Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38(5), 1–5. doi:10.1016/j.ceramint.2012.01.012;water;silicon nitride;cera;covalent;-50;;;;;;?;no;no;2;25;;;62;0,38;;33,5;3;4;35;0,0857142857142857;block;;0,05;;;0;3200;1000;;0,0335;290;; Zhang2012a;Zhang, R., Fang, D., Pei, Y., & Zhou, L. (2012). Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38(5), 1–5. doi:10.1016/j.ceramint.2012.01.012;water;silicon nitride;cera;covalent;-50;;;;;;?;no;no;2;20;;;66;0,34;;26,9;3;4;35;0,0857142857142857;block;;0,05;;;0;3200;1000;;0,0269;290;; Zhang2012a;Zhang, R., Fang, D., Pei, Y., & Zhou, L. (2012). Microstructure, mechanical and dielectric properties of highly porous silicon nitride ceramics produced by a new water-based freeze casting. Ceramics International, 38(5), 1–5. doi:10.1016/j.ceramint.2012.01.012;water;silicon nitride;cera;covalent;-50;;;;;;?;no;no;2;15;;;74;0,26;;14,3;3;4;35;0,0857142857142857;block;;0,05;;;0;3200;1000;;0,0143;290;; Liu;Liu, G., Button, T. W., & Zhang, D. (2014). Porous BaTiO3 and its Composites Fabricated by Freeze Casting. Journal of the European Ceramic Society. doi:10.1016/j.jeurceramsoc.2014.05.043;water;BaTiO3;cera;oxide;;45;;;20;;;no;;0,05;20;;;42;0,58;;;;;;;;;0,2;;;0;500;90;;;;; Liu;Liu, G., Button, T. W., & Zhang, D. (2014). Porous BaTiO3 and its Composites Fabricated by Freeze Casting. Journal of the European Ceramic Society. doi:10.1016/j.jeurceramsoc.2014.05.043;water;BaTiO3;cera;oxide;;45;;;;;;no;;0,05;45;;;18;0,82;;;;;;;;;0,2;;;0;500;90;;;;; Liu;Liu, G., Button, T. W., & Zhang, D. (2014). Porous BaTiO3 and its Composites Fabricated by Freeze Casting. Journal of the European Ceramic Society. doi:10.1016/j.jeurceramsoc.2014.05.043;water;BaTiO3;cera;oxide;;45;;;;;?;no;no;0,05;;;;41,1;0,589;0,99;;;;;;;;0,2;;;0;500;90;0,011;;11;13,486206954;0,09 Liu;Liu, G., Button, T. W., & Zhang, D. (2014). Porous BaTiO3 and its Composites Fabricated by Freeze Casting. Journal of the European Ceramic Society. doi:10.1016/j.jeurceramsoc.2014.05.043;water;BaTiO3;cera;oxide;;45;;;;;?;no;no;0,05;;;;40,3;0,597;1,15;;;;;;;;0,2;;;0;500;90;0,0127777777777778;;11;14,043227418;0,104545454545455 Liu;Liu, G., Button, T. W., & Zhang, D. (2014). Porous BaTiO3 and its Composites Fabricated by Freeze Casting. Journal of the European Ceramic Society. doi:10.1016/j.jeurceramsoc.2014.05.043;water;BaTiO3;cera;oxide;;45;;;;;?;no;no;0,05;;;;39,5;0,605;1,25;;;;;;;;0,2;;;0;500;90;0,0138888888888889;;11;14,61537825;0,113636363636364 Liu;Liu, G., Button, T. W., & Zhang, D. (2014). Porous BaTiO3 and its Composites Fabricated by Freeze Casting. Journal of the European Ceramic Society. doi:10.1016/j.jeurceramsoc.2014.05.043;water;BaTiO3;cera;oxide;;45;;;;;?;no;no;0,05;;;;38,2;0,618;1,75;;;;;;;;0,2;;;0;500;90;0,0194444444444444;;11;15,577916112;0,159090909090909 Guo2010c;Guo, R., Wang, C.-A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. doi:10.1063/1.3525056;water;PZT;cera;oxide;-30;;;;;;;no;;;15;;;68,6;0,314;;;;;;;;;;;;0;500;80;;;;; Guo2010c;Guo, R., Wang, C.-A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. doi:10.1063/1.3525056;water;PZT;cera;oxide;-30;;;;;;;no;;;20;;;62,2;0,378;;;;;;;;;;;;0;500;80;;;;; Guo2010c;Guo, R., Wang, C.-A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. doi:10.1063/1.3525056;water;PZT;cera;oxide;-30;;;;;;;no;;;25;;;55,1;0,449;;;;;;;;;;;;0;500;80;;;;; Guo2010c;Guo, R., Wang, C.-A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. doi:10.1063/1.3525056;water;PZT;cera;oxide;-30;;;;;;;no;;;30;;;50;0,5;;;;;;;;;;;;0;500;80;;;;; Guo2010c;Guo, R., Wang, C.-A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. doi:10.1063/1.3525056;water;PZT;cera;oxide;-30;;;;;;;no;;;35;;;41,7;0,583;;;;;;;;;;;;0;500;80;;;;; Guo2010c;Guo, R., Wang, C.-A., Yang, A., & Fu, J. (2010). Enhanced piezoelectric property of porous lead zirconate titanate ceramics with one dimensional ordered pore structure. Journal of Applied Physics, 108(12), 124112. doi:10.1063/1.3525056;water;PZT;cera;oxide;-30;;;;;;;no;;;40;;;27,8;0,722;;;;;;;;;;;;0;500;80;;;;; Yao2011a;Yao, D., Xia, Y., Zeng, Y.-P., Zuo, K., & Jiang, D. (2012). Fabrication porous Si3N4 ceramics via starch consolidation–freeze drying process. Materials Letters, 68, 75–77. doi:10.1016/j.matlet.2011.09.092;water;silicon nitride;cera;covalent;-18;;;;;;?;no;no;0,5;;44;;71,5;0,285;;6,7;;;;;;;;;;0;3200;1000;;0,0067;290;; Yao2011a;Yao, D., Xia, Y., Zeng, Y.-P., Zuo, K., & Jiang, D. (2012). Fabrication porous Si3N4 ceramics via starch consolidation–freeze drying process. Materials Letters, 68, 75–77. doi:10.1016/j.matlet.2011.09.092;water;silicon nitride;cera;covalent;-18;;;;;;?;no;no;0,5;;44;;74,7;0,253;;22,7;;;;;;;;;;0;3200;1000;;0,0227;290;; Yao2011a;Yao, D., Xia, Y., Zeng, Y.-P., Zuo, K., & Jiang, D. (2012). Fabrication porous Si3N4 ceramics via starch consolidation–freeze drying process. Materials Letters, 68, 75–77. doi:10.1016/j.matlet.2011.09.092;water;silicon nitride;cera;covalent;-18;;;;;;?;no;no;0,5;;44;;73,4;0,266;;42,3;;;;;;;;;;0;3200;1000;;0,0423;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;67,196;0,32804;;14,510;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,01451;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;66,906;0,33094;;16,411;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,016411;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;59,891;0,40109;;32,699;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,032699;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;33,076;0,66924;;87,233;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,087233;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;66,110;0,339;;13,418;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,013418;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;65,175;0,34825;;14,676;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,014676;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;53,252;0,46748;;67,110;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,06711;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;19,124;0,80876;;289,387;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,289387;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;61,753;0,38247;;41,692;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,041692;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;51,660;0,483;;76,576;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,076576;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;32,950;0,671;;225,501;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,225501;290;; Xia2012;Xia, Y., Zeng, Y.-P., & Jiang, D. (2012). Microstructure and mechanical properties of porous Si3N4 ceramics prepared by freeze-casting. Materials & Design, 33, 98–103. doi:10.1016/j.matdes.2011.06.023;water;silicon nitride;cera;covalent;-198;;;;;;?;no;no;0,5;;50;;12,227;0,87773;;418,510;3;4;36;0,0833333333333333;block;;0,5;;;0;3200;1000;;0,41851;290;; Li2011d;Li, D., & Li, M. (2011). Preparation of porous alumina ceramic with ultra-high porosity and long straight pores by freeze casting. Journal of Porous Materials, 19(3), 345–349. doi:10.1007/s10934-011-9480-y;TBA;alumina;cera;oxide;0;;;;66;;?;no;no;0,3;10;;;82;0,18;2,7;;8;;6;1,33333333333333;;;0,5;;;0;2600;400;0,00675;;390;13,64688;0,00692307692307692 Li2011d;Li, D., & Li, M. (2011). Preparation of porous alumina ceramic with ultra-high porosity and long straight pores by freeze casting. Journal of Porous Materials, 19(3), 345–349. doi:10.1007/s10934-011-9480-y;TBA;alumina;cera;oxide;0;;;;40;;?;no;no;0,3;15;;;73;0,27;22,6;;8;;6;1,33333333333333;;;0,5;;;0;2600;400;0,0565;;390;46,05822;0,057948717948718 Li2011d;Li, D., & Li, M. (2011). Preparation of porous alumina ceramic with ultra-high porosity and long straight pores by freeze casting. Journal of Porous Materials, 19(3), 345–349. doi:10.1007/s10934-011-9480-y;TBA;alumina;cera;oxide;0;;;;60;;?;no;no;0,3;20;;;65;0,35;36,9;;8;;6;1,33333333333333;;;0,5;;;0;2600;400;0,09225;;390;100,3275;0,0946153846153846 Kim2011a;Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317–2322. doi:10.1016/j.ceramint.2011.03.023;TBA;HAP;cera;oxide;0;;;;;;?;no;no;0,2;20;;;79,3;0,207;2,7;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;110;0,0245454545454545;;120;6,38621496;0,0225 Kim2011a;Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317–2322. doi:10.1016/j.ceramint.2011.03.023;TBA;HAP;cera;oxide;0;;;;10;;?;no;no;0,2;30;;;68,1;0,319;7,2;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;110;0,0654545454545455;;120;23,37246648;0,06 Kim2011a;Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317–2322. doi:10.1016/j.ceramint.2011.03.023;TBA;HAP;cera;oxide;0;;;;;;?;no;no;0,2;40;;;57;0,43;22,3;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;110;0,202727272727273;;120;57,24504;0,185833333333333 Kim2011a;Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317–2322. doi:10.1016/j.ceramint.2011.03.023;TBA;HAP;cera;oxide;0;;;;6;;?;no;no;0,2;20;;;76,5;0,235;5,7;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;110;0,0518181818181818;;120;9,34407;0,0475 Kim2011a;Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317–2322. doi:10.1016/j.ceramint.2011.03.023;TBA;HAP;cera;oxide;0;;;;10;;?;no;no;0,2;30;;;64,6;0,354;15,2;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;110;0,138181818181818;;120;31,94054208;0,126666666666667 Kim2011a;Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317–2322. doi:10.1016/j.ceramint.2011.03.023;TBA;HAP;cera;oxide;0;;;;4;;?;no;no;0,2;40;;;49,9;0,501;27,8;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;110;0,252727272727273;;120;90,54108072;0,231666666666667 Kim2011a;Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317–2322. doi:10.1016/j.ceramint.2011.03.023;TBA;HAP;cera;oxide;0;;;;;;?;no;no;0,2;20;;;67;0,33;6,8;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;110;0,0618181818181818;;120;25,87464;0,0566666666666667 Kim2011a;Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317–2322. doi:10.1016/j.ceramint.2011.03.023;TBA;HAP;cera;oxide;0;;;;8;;?;no;no;0,2;30;;;59,5;0,405;17,3;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;110;0,157272727272727;;120;47,82969;0,144166666666667 Kim2011a;Kim, J. H., Lee, J. H., Yang, T. Y., Yoon, S. Y., Kim, B. K., & Park, H. C. (2011). TBA-based freeze/gel casting of porous hydroxyapatite scaffolds. Ceramics International, 37(7), 2317–2322. doi:10.1016/j.ceramint.2011.03.023;TBA;HAP;cera;oxide;0;;;;;;?;no;no;0,2;40;;;41,9;0,581;35,1;;12;;18;0,666666666666667;cylinder;3,05362805928928;0,5;;;0;140;110;0,319090909090909;;120;141,20851752;0,2925 Yue2011;Yue, J., Dong, B., & Wang, H. (2011). Porous Si3N4 Fabricated by Phase Separation Method Using Benzoic Acid as Pore-Forming Agent. Journal of the American Ceramic Society, 94(7), 1989–1991. doi:10.1111/j.1551-2916.2011.04611.x;benzoic acid;silicon nitride;cera;covalent;20;;;;0,6;;?;no;no;1;40;;;57,048;0,42952;;126,331;;;;;block;;0,05;;;0;3200;1000;;0,126331;290;; Yue2011;Yue, J., Dong, B., & Wang, H. (2011). Porous Si3N4 Fabricated by Phase Separation Method Using Benzoic Acid as Pore-Forming Agent. Journal of the American Ceramic Society, 94(7), 1989–1991. doi:10.1111/j.1551-2916.2011.04611.x;benzoic acid;silicon nitride;cera;covalent;20;;;;0,65;;?;no;no;1;40;;;62,025;0,37975;;116,072;;;;;block;;0,05;;;0;3200;1000;;0,116072;290;; Yue2011;Yue, J., Dong, B., & Wang, H. (2011). Porous Si3N4 Fabricated by Phase Separation Method Using Benzoic Acid as Pore-Forming Agent. Journal of the American Ceramic Society, 94(7), 1989–1991. doi:10.1111/j.1551-2916.2011.04611.x;benzoic acid;silicon nitride;cera;covalent;20;;;;0,7;;?;no;no;1;40;;;64,526;0,35474;;102,222;;;;;block;;0,05;;;0;3200;1000;;0,102222;290;; Yue2011;Yue, J., Dong, B., & Wang, H. (2011). Porous Si3N4 Fabricated by Phase Separation Method Using Benzoic Acid as Pore-Forming Agent. Journal of the American Ceramic Society, 94(7), 1989–1991. doi:10.1111/j.1551-2916.2011.04611.x;benzoic acid;silicon nitride;cera;covalent;20;;;;0,8;;?;no;no;1;40;;;65,898;0,34102;;84,752;;;;;block;;0,05;;;0;3200;1000;;0,084752;290;; Han;Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (n.d.). Microstructure Controlling and Properties of Highly Porosity Ceramics by Freeze-Casting. Wjoe.hebeu.edu.cn. Retrieved from http://wjoe.hebeu.edu.cn/ICCE-17 proceedings Hawaii USA/Han, Jiecai (Harbin Inst.Tech., China) 327.pdf;camphene;zirconia;cera;oxide;;;;;;;;;;;10;;;85;0,15;50;;;;;;;;;;;0;3000;800;0,0625;;220;4,455;0,227272727272727 Han;Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (n.d.). Microstructure Controlling and Properties of Highly Porosity Ceramics by Freeze-Casting. Wjoe.hebeu.edu.cn. Retrieved from http://wjoe.hebeu.edu.cn/ICCE-17 proceedings Hawaii USA/Han, Jiecai (Harbin Inst.Tech., China) 327.pdf;camphene;zirconia;cera;oxide;;;;;;;;;;;20;;;67;0,33;75;;;;;;;;;;;0;3000;800;0,09375;;220;47,43684;0,340909090909091 Mongkolkachit2010;Mongkolkachit, C., Wanakitti, S., Wattanapornphan, P., & Srimanosaowapak, S. (2010). Characteristics of Porous Alumina Produced by Freeze Casting. Journal of the Microscopy Society of Thailand, 24(2), 126–129.;water;alumina;cera;oxide;-55;;;;;;;no;;;28;;;64,4;0,356;;;;;;;;;;;;0;2600;400;;;390;; Mongkolkachit2010;Mongkolkachit, C., Wanakitti, S., Wattanapornphan, P., & Srimanosaowapak, S. (2010). Characteristics of Porous Alumina Produced by Freeze Casting. Journal of the Microscopy Society of Thailand, 24(2), 126–129.;water;alumina;cera;oxide;-115;;;;;;;no;;;28;;;63,53;0,3647;;;;;;;;;;;;0;2600;400;;;390;; Mongkolkachit2010;Mongkolkachit, C., Wanakitti, S., Wattanapornphan, P., & Srimanosaowapak, S. (2010). Characteristics of Porous Alumina Produced by Freeze Casting. Journal of the Microscopy Society of Thailand, 24(2), 126–129.;water;alumina;cera;oxide;-196;;;;;;;no;;;28;;;65,45;0,3455;;;;;;;;;;;;0;2600;400;;;390;; Guo2010b;Guo, R., Wang, C.-A., & Yang, A. (2011). Piezoelectric Properties of the 1-3 Type Porous Lead Zirconate Titanate Ceramics. Journal of the American Ceramic Society, 94(6), 1794–1799. doi:10.1111/j.1551-2916.2010.04294.x;TBA;PZT;cera;oxide;-30;;;;;;;no;;1,8;15;;;25,426;0,74574;;;;;;;;;;;;0;500;80;;;;; Guo2010b;Guo, R., Wang, C.-A., & Yang, A. (2011). Piezoelectric Properties of the 1-3 Type Porous Lead Zirconate Titanate Ceramics. Journal of the American Ceramic Society, 94(6), 1794–1799. doi:10.1111/j.1551-2916.2010.04294.x;TBA;PZT;cera;oxide;-30;;;;;;;no;;1,8;20;;;32,885;0,67115;;;;;;;;;;;;0;500;80;;;;; Guo2010b;Guo, R., Wang, C.-A., & Yang, A. (2011). Piezoelectric Properties of the 1-3 Type Porous Lead Zirconate Titanate Ceramics. Journal of the American Ceramic Society, 94(6), 1794–1799. doi:10.1111/j.1551-2916.2010.04294.x;TBA;PZT;cera;oxide;-30;;;;;;;no;;1,8;25;;;41,045;0,58955;;;;;;;;;;;;0;500;80;;;;; Guo2010b;Guo, R., Wang, C.-A., & Yang, A. (2011). Piezoelectric Properties of the 1-3 Type Porous Lead Zirconate Titanate Ceramics. Journal of the American Ceramic Society, 94(6), 1794–1799. doi:10.1111/j.1551-2916.2010.04294.x;TBA;PZT;cera;oxide;-30;;;;;;;no;;1,8;30;;;49,480;0,505;;;;;;;;;;;;0;500;80;;;;; Guo2010b;Guo, R., Wang, C.-A., & Yang, A. (2011). Piezoelectric Properties of the 1-3 Type Porous Lead Zirconate Titanate Ceramics. Journal of the American Ceramic Society, 94(6), 1794–1799. doi:10.1111/j.1551-2916.2010.04294.x;TBA;PZT;cera;oxide;-30;;;;;;;no;;1,8;35;;;55,493;0,44507;;;;;;;;;;;;0;500;80;;;;; Guo2010b;Guo, R., Wang, C.-A., & Yang, A. (2011). Piezoelectric Properties of the 1-3 Type Porous Lead Zirconate Titanate Ceramics. Journal of the American Ceramic Society, 94(6), 1794–1799. doi:10.1111/j.1551-2916.2010.04294.x;TBA;PZT;cera;oxide;-30;;;;;;;no;;1,8;40;;;70,816;0,29184;;;;;;;;;;;;0;500;80;;;;; Guo2010;Guo, R., Wang, C.-A., & Yang, A. (2011). Effects of pore size and orientation on dielectric and piezoelectric properties of 1–3 type porous PZT ceramics. Journal of the European Ceramic Society, 31(4), 605–609. doi:10.1016/j.jeurceramsoc.2010.10.019;TBA;PZT;cera;oxide;-30;;;;;;;no;;1,8;15;;;68;0,32;;;;;;;;;;;;0;500;80;;;;; Guo2010;Guo, R., Wang, C.-A., & Yang, A. (2011). Effects of pore size and orientation on dielectric and piezoelectric properties of 1–3 type porous PZT ceramics. Journal of the European Ceramic Society, 31(4), 605–609. doi:10.1016/j.jeurceramsoc.2010.10.019;TBA;PZT;cera;oxide;-30;;;;;;;no;;1,8;15;;;66,2;0,338;;;;;;;;;;;;0;500;80;;;;; Guo2010;Guo, R., Wang, C.-A., & Yang, A. (2011). Effects of pore size and orientation on dielectric and piezoelectric properties of 1–3 type porous PZT ceramics. Journal of the European Ceramic Society, 31(4), 605–609. doi:10.1016/j.jeurceramsoc.2010.10.019;TBA;PZT;cera;oxide;-30;;;;;;;no;;1,8;15;;;65,5;0,345;;;;;;;;;;;;0;500;80;;;;; Ye2010;Ye, F., Zhang, J., Liu, L., & Zhan, H. (2011). Effect of solid content on pore structure and mechanical properties of porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 528(3), 1421–1424. doi:10.1016/j.msea.2010.10.066;water;silicon nitride;cera;covalent;-196;;;;;;?;yes;no;0,7;30;;;66,3;0,337;;57;;;;;;;;;;0;3200;1000;;0,057;290;; Ye2010;Ye, F., Zhang, J., Liu, L., & Zhan, H. (2011). Effect of solid content on pore structure and mechanical properties of porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 528(3), 1421–1424. doi:10.1016/j.msea.2010.10.066;water;silicon nitride;cera;covalent;-196;;;;;;?;yes;no;0,7;40;;;53,2;0,468;;82;;;;;;;;;;0;3200;1000;;0,082;290;; Ye2010;Ye, F., Zhang, J., Liu, L., & Zhan, H. (2011). Effect of solid content on pore structure and mechanical properties of porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 528(3), 1421–1424. doi:10.1016/j.msea.2010.10.066;water;silicon nitride;cera;covalent;-196;;;;;;?;yes;no;0,7;50;;;42,7;0,573;;189;;;;;;;;;;0;3200;1000;;0,189;290;; Liu2010;Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta Biomaterialia, 7(1), 406–16. doi:10.1016/j.actbio.2010.08.025;camphene;bioglass;glass;oxide;3;;;;6;;brittle;no;no;1;;;;19;0,81;180;;7;7;7;1;cylinder;0,269391570045325;0,5;;;0;500;100;1,8;;30;95,65938;6 Liu2010;Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta Biomaterialia, 7(1), 406–16. doi:10.1016/j.actbio.2010.08.025;camphene;bioglass;glass;oxide;3;;;;36;;brittle;no;no;1;;;;37;0,63;66;;7;7;7;1;cylinder;0,269391570045325;0,5;;;0;500;100;0,66;;30;45,00846;2,2 Liu2010;Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta Biomaterialia, 7(1), 406–16. doi:10.1016/j.actbio.2010.08.025;camphene;bioglass;glass;oxide;3;;;;62;;brittle;no;no;1;;;;46;0,54;53;;7;7;7;1;cylinder;0,269391570045325;0,5;;;0;500;100;0,53;;30;28,34352;1,76666666666667 Liu2010;Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta Biomaterialia, 7(1), 406–16. doi:10.1016/j.actbio.2010.08.025;camphene;bioglass;glass;oxide;3;;;;86;;brittle;no;no;1;;;;52;0,48;27;;7;7;7;1;cylinder;0,269391570045325;0,5;;;0;500;100;0,27;;30;19,90656;0,9 Liu2010;Liu, X., Rahaman, M. N., & Fu, Q. (2011). Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response. Acta Biomaterialia, 7(1), 406–16. doi:10.1016/j.actbio.2010.08.025;camphene;bioglass;glass;oxide;3;;;;113;;cellular;no;no;1;;;;59;0,41;16;;7;7;7;1;cylinder;0,269391570045325;0,5;;;0;500;100;0,16;;30;12,40578;0,533333333333333 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;150;;?;yes;no;;;;;59,913;0,40087;6,501;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0591;;120;46,3813264357222;0,054175 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;250;;?;yes;no;;;;;60,868;0,39132;5,992;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0544727272727273;;120;43,144816973737;0,0499333333333333 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;150;;?;yes;no;;;;;64,868;0,35132;4,009;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0364454545454546;;120;31,220590910377;0,0334083333333333 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;250;;?;yes;no;;;;;65,847;0,34153;3,714;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0337636363636364;;120;28,6826366156955;0,03095 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;350;;?;yes;no;;;;;69,885;0,30115;2,848;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0258909090909091;;120;19,66441807503;0,0237333333333333 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;150;;?;yes;no;;;;;70,962;0,29038;2,639;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0239909090909091;;120;17,6291997716678;0,0219916666666667 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;250;;?;yes;no;;;;;75,005;0,24995;2,288;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0208;;120;11,24325134991;0,0190666666666667 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;350;;?;yes;no;;;;;79,974;0,20026;2,031;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0184636363636364;;120;5,78249321585472;0,016925 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;350;;?;yes;no;;;;;84,987;0,15013;1,630;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0148181818181818;;120;2,43632347718184;0,0135833333333333 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;350;;?;yes;no;;;;;88,061;0,11939;1,911;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0173727272727273;;120;1,22528284489368;0,015925 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;150;;?;yes;no;;;;;82,000;0,180;2,356;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0214181818181818;;120;4,19904;0,0196333333333333 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;350;;?;yes;no;;;;;73,802;0,26198;2,658;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0241636363636364;;120;12,9460389655622;0,02215 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;350;;?;yes;no;;;;;72,881;0,27119;3,001;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0272818181818182;;120;14,3599692428345;0,0250083333333333 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;350;;?;yes;no;;;;;66,947;0,33053;4,518;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0410727272727273;;120;25,9995090527114;0,03765 Zhao2010;Zhao, K., Tang, Y.-F., Qin, Y.-S., & Wei, J.-Q. (2011). Porous hydroxyapatite ceramics by ice templating: Freezing characteristics and mechanical properties. Ceramics International, 37(2), 635–639. doi:10.1016/j.ceramint.2010.10.003;water;HAP;cera;oxide;;;;;350;;?;yes;no;;;;;63,923;0,36077;6,720;;10;;10;1;cylinder;0,785398163397448;0,5;;;0;140;110;0,0610909090909091;;120;33,8083320877438;0,056 Ye2010a;Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Pore structure and mechanical properties in freeze cast porous Si3N4 composites using polyacrylamide as an addition agent. Journal of Alloys and Compounds, 506(1), 423–427. doi:10.1016/j.jallcom.2010.07.020;water;silicon nitride;cera;covalent;-196;;;;;;?;yes;no;0,5;40;;;38;0,62;;57;3;4;36;0,0833333333333333;block;;;;;0;3200;1000;;0,057;290;; Ye2010a;Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Pore structure and mechanical properties in freeze cast porous Si3N4 composites using polyacrylamide as an addition agent. Journal of Alloys and Compounds, 506(1), 423–427. doi:10.1016/j.jallcom.2010.07.020;water;silicon nitride;cera;covalent;-196;;;;;;?;yes;no;0,5;40;;;42,4;0,576;;111;3;4;36;0,0833333333333333;block;;;;;0;3200;1000;;0,111;290;; Ye2010a;Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Pore structure and mechanical properties in freeze cast porous Si3N4 composites using polyacrylamide as an addition agent. Journal of Alloys and Compounds, 506(1), 423–427. doi:10.1016/j.jallcom.2010.07.020;water;silicon nitride;cera;covalent;-196;;;;;;?;yes;no;0,5;40;;;44,8;0,552;;75;3;4;36;0,0833333333333333;block;;;;;0;3200;1000;;0,075;290;; Ye2010b;Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Effect of sintering temperature on microstructure and mechanical properties of highly porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 527(24-25), 6501–6504. doi:10.1016/j.msea.2010.07.038;water;silicon nitride;cera;covalent;-196;;;;;;?;no;no;0,7;20;;;73,2;0,268;;21;3;4;36;0,0833333333333333;block;;;;;0;3200;1000;;0,021;290;; Ye2010b;Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Effect of sintering temperature on microstructure and mechanical properties of highly porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 527(24-25), 6501–6504. doi:10.1016/j.msea.2010.07.038;water;silicon nitride;cera;covalent;-196;;;;;;?;no;no;0,7;20;;;72,6;0,274;;50;3;4;36;0,0833333333333333;block;;;;;0;3200;1000;;0,05;290;; Ye2010b;Ye, F., Zhang, J., Zhang, H., & Liu, L. (2010). Effect of sintering temperature on microstructure and mechanical properties of highly porous silicon nitride ceramics produced by freeze casting. Materials Science and Engineering: A, 527(24-25), 6501–6504. doi:10.1016/j.msea.2010.07.038;water;silicon nitride;cera;covalent;-196;;;;;;?;no;no;0,7;20;;;72,1;0,279;;73;3;4;36;0,0833333333333333;block;;;;;0;3200;1000;;0,073;290;; Nakata2007;"Nakata, M., Fukushima, M., & Yoshizawa, Y. (2007). Porous Alumina Ceramics by novel gelate freezing method. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials, 139–143. Retrieved from http://books.google.com/books?hl=en&lr=&id=E7gOi4i9FtEC&oi=fnd&pg=PA139&dq=Porous+alumina+ceramics+by+novel+gelate+freezing+method&ots=zU7zMA5es6&sig=uEQLBYZm9OAEYLVTNuiQdwZeHU4";water;alumina;cera;oxide;-20;;;;;;;?;;0,4;20;;;57,3;0,427;;;;;;;;;;;;0;2600;400;;;390;; Nakata2007;"Nakata, M., Fukushima, M., & Yoshizawa, Y. (2007). Porous Alumina Ceramics by novel gelate freezing method. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials, 139–143. Retrieved from http://books.google.com/books?hl=en&lr=&id=E7gOi4i9FtEC&oi=fnd&pg=PA139&dq=Porous+alumina+ceramics+by+novel+gelate+freezing+method&ots=zU7zMA5es6&sig=uEQLBYZm9OAEYLVTNuiQdwZeHU4";water;alumina;cera;oxide;-20;;;;;;;?;;0,4;20;;;55,3;0,447;;;;;;;;;;;;0;2600;400;;;390;; Nakata2007;"Nakata, M., Fukushima, M., & Yoshizawa, Y. (2007). Porous Alumina Ceramics by novel gelate freezing method. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials, 139–143. Retrieved from http://books.google.com/books?hl=en&lr=&id=E7gOi4i9FtEC&oi=fnd&pg=PA139&dq=Porous+alumina+ceramics+by+novel+gelate+freezing+method&ots=zU7zMA5es6&sig=uEQLBYZm9OAEYLVTNuiQdwZeHU4";water;alumina;cera;oxide;-20;;;;;;;?;;0,4;10;;;71,7;0,283;;;;;;;;;;;;0;2600;400;;;390;; Nakata2007;"Nakata, M., Fukushima, M., & Yoshizawa, Y. (2007). Porous Alumina Ceramics by novel gelate freezing method. Advanced Processing and Manufacturing Technologies for Structural and Multifunctional Materials, 139–143. Retrieved from http://books.google.com/books?hl=en&lr=&id=E7gOi4i9FtEC&oi=fnd&pg=PA139&dq=Porous+alumina+ceramics+by+novel+gelate+freezing+method&ots=zU7zMA5es6&sig=uEQLBYZm9OAEYLVTNuiQdwZeHU4";water;alumina;cera;oxide;-20;;;;;;;?;;0,4;10;;;69,7;0,303;;;;;;;;;;;;0;2600;400;;;390;; Ding2007;Ding, S., Zeng, Y.-P., & Jiang, D. (2007). Fabrication of Mullite Ceramics With Ultrahigh Porosity by Gel Freeze Drying. Journal of the American Ceramic Society, 90(7), 2276–2279. doi:10.1111/j.1551-2916.2007.01696.x;water;mullite;cera;oxide;-20;;;;100;;cellular;no;no;;;;;88,6;0,114;1,52;;20;20;20;1;block;;0,5;;;0;1300;320;0,00475;;;; Landi2008;Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620–6. doi:10.1016/j.actbio.2008.05.023;water;HAP;cera;oxide;-10;;;;;;cellular;?;no;;15;;;65;0,35;0,5;;10;;10;1;cylinder;0,785398163397448;1;;;0;140;110;0,00454545454545455;;120;30,87;0,00416666666666667 Landi2008;Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620–6. doi:10.1016/j.actbio.2008.05.023;water;HAP;cera;oxide;-10;;;;150;;cellular;no;no;;20;;;56;0,44;4,3;;10;;10;1;cylinder;0,785398163397448;1;;;0;140;110;0,0390909090909091;;120;61,33248;0,0358333333333333 Landi2008;Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620–6. doi:10.1016/j.actbio.2008.05.023;water;HAP;cera;oxide;-10;;;;;;cellular;yes;no;;25;;;48;0,52;2,5;;10;;10;1;cylinder;0,785398163397448;1;;;0;140;110;0,0227272727272727;;120;101,23776;0,0208333333333333 Landi2008;Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620–6. doi:10.1016/j.actbio.2008.05.023;water;HAP;cera;oxide;-10;;;;;;cellular;yes;no;;30;;;43;0,57;3,9;;10;;10;1;cylinder;0,785398163397448;1;;;0;140;110;0,0354545454545455;;120;133,33896;0,0325 Landi2008;Landi, E., Valentini, F., & Tampieri, A. (2008). Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications. Acta Biomaterialia, 4(6), 1620–6. doi:10.1016/j.actbio.2008.05.023;water;HAP;cera;oxide;-10;;;;;;cellular;yes;no;;35;;;31;0,69;4;;10;;10;1;cylinder;0,785398163397448;1;;;0;140;110;0,0363636363636364;;120;236,52648;0,0333333333333333 Fife2009;Fife, J., Li, J., Dunand, D. C., & Voorhees, P. W. (2011). Morphological analysis of pores in directionally freeze-cast titanium foams. Journal of Materials Research, 24(1), 117–124. doi:10.1557/JMR.2009.0023;water;Ti;metal;;;;3;;;;;no;;20;22;;;41,4;0,586;;;;;;;;;;;;0;900;900;;;;; Fife2009;Fife, J., Li, J., Dunand, D. C., & Voorhees, P. W. (2011). Morphological analysis of pores in directionally freeze-cast titanium foams. Journal of Materials Research, 24(1), 117–124. doi:10.1557/JMR.2009.0023;water;Ti;metal;;;;3;;;;;no;;20;22;;;44,6;0,554;;;;;;;;;;;;0;900;900;;;;; Jung2009;Jung, H.-D., Yook, S.-W., Kim, H.-E., & Koh, Y.-H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials Letters, 63(17), 1545–1547. doi:10.1016/j.matlet.2009.04.012;camphene;Ti;metal;;42;;;;;;;no;;20;10;;;75;0,25;;;;;;;;;;;;0;900;900;;;;; Jung2009;Jung, H.-D., Yook, S.-W., Kim, H.-E., & Koh, Y.-H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials Letters, 63(17), 1545–1547. doi:10.1016/j.matlet.2009.04.012;camphene;Ti;metal;;42;;;;;;;no;;20;25;;;53;0,47;;;;;;;;;;;;0;900;900;;;;; Jung2009;Jung, H.-D., Yook, S.-W., Kim, H.-E., & Koh, Y.-H. (2009). Fabrication of titanium scaffolds with porosity and pore size gradients by sequential freeze casting. Materials Letters, 63(17), 1545–1547. doi:10.1016/j.matlet.2009.04.012;camphene;Ti;metal;;42;;;;;;;no;;20;40;;;35;0,65;;;;;;;;;;;;0;900;900;;;;; Chino2008;Chino, Y., & Dunand, D. C. (2008). Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Materialia, 56(1), 105–113. doi:10.1016/j.actamat.2007.09.002;water;Ti;metal;;-18;;;;150;;cellular;no;no;45;44;;;60;0,4;50;;8;;4;2;cylinder;0,100530964914873;;;;0;900;900;0,0555555555555556;;116;44,544;0,431034482758621 Fu2008a;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514–22. doi:10.1002/jbm.b.31051;water;HAP;cera;oxide;-20;;;;30;;cellular;?;no;1;20;;;51,792;0,48208;11,493;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,104481818181818;;120;80,6658732107366;0,095775 Fu2008a;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514–22. doi:10.1002/jbm.b.31051;water;HAP;cera;oxide;-20;;;;23;;cellular;?;no;1;20;;;51,009;0,48991;12,664;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,115127272727273;;120;84,6606131325151;0,105533333333333 Fu2008a;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514–22. doi:10.1002/jbm.b.31051;water;HAP;cera;oxide;-20;;;;17;;cellular;?;no;1;20;;;49,026;0,50974;14,650;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,133181818181818;;120;95,3627222955053;0,122083333333333 Fu2008a;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514–22. doi:10.1002/jbm.b.31051;water;HAP;cera;oxide;-20;;;;12;;cellular;?;no;1;20;;;48,005;0,51995;16,947;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,154063636363636;;120;101,20855960791;0,141225 Fu2008a;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. II. Sintering, microstructure, and mechanical behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(2), 514–22. doi:10.1002/jbm.b.31051;water;HAP;cera;oxide;-20;;;;5;;cellular;?;no;1;20;;;46,019;0,53981;18,062;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,1642;;120;113,254449462102;0,150516666666667 Fu2008;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. doi:10.1088/1748-6041/3/2/025005;water;HAP;cera;oxide;-20;;;;;;;?;;1;10;;;70;0,3;;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;;;120;; Fu2008;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. doi:10.1088/1748-6041/3/2/025005;water;HAP;cera;oxide;-20;;;;15;;cellular;yes;no;1;20;;;55;0,45;12;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,109090909090909;;120;65,61;0,1 Fu2008;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. doi:10.1088/1748-6041/3/2/025005;water/glycerol;HAP;cera;oxide;-20;;;;10;;cellular;?;no;1;10;;;67;0,33;18;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,163636363636364;;120;25,87464;0,15 Fu2008;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. doi:10.1088/1748-6041/3/2/025005;water/dioxane;HAP;cera;oxide;-20;;;;100;;cellular;?;no;1;10;;;65;0,35;7,5;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,0681818181818182;;120;30,87;0,0625 Fu2008;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. doi:10.1088/1748-6041/3/2/025005;water;HAP;cera;oxide;-20;;;;15;;cellular;yes;no;1;;;;54,995;0,45005;6,812;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,0619272727272727;;120;65,63187243009;0,0567666666666667 Fu2008;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. doi:10.1088/1748-6041/3/2/025005;water;HAP;cera;oxide;-20;;;;15;;cellular;yes;no;1;;;;54,590;0,454;7,214;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,0655818181818182;;120;67,41972894312;0,0601166666666667 Fu2008;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. doi:10.1088/1748-6041/3/2/025005;water;HAP;cera;oxide;-20;;;;15;;cellular;yes;no;1;;;;53,602;0,46398;8,365;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,0760454545454545;;120;71,9167872936903;0,0697083333333333 Fu2008;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. doi:10.1088/1748-6041/3/2/025005;water;HAP;cera;oxide;-20;;;;15;;cellular;yes;no;1;;;;52,693;0,47307;9,509;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,0864454545454545;;120;76,226981071279;0,0792416666666667 Fu2008;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. doi:10.1088/1748-6041/3/2/025005;water;HAP;cera;oxide;-20;;;;15;;cellular;yes;no;1;;;;51,772;0,48228;11,475;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,104318181818182;;120;80,7663121548135;0,095625 Fu2008;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze-cast hydroxyapatite scaffolds for bone tissue engineering applications. Biomedical Materials, 3(2), 025005. doi:10.1088/1748-6041/3/2/025005;water;HAP;cera;oxide;-20;;;;15;;cellular;yes;no;1;;;;51,919;0,48081;11,342;;16;;8;2;cylinder;0,804247719318987;0,5;;;0;140;110;0,103109090909091;;120;80,0300284671175;0,0945166666666667 Fu2007;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125–35. doi:10.1002/jbm.b.30997;water;HAP;cera;oxide;;;;;;;;yes;;0,5;5;;;85;0,15;;;;;;;;;;;;0;140;110;;;120;; Fu2007;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125–35. doi:10.1002/jbm.b.30997;water;HAP;cera;oxide;;;;;;;;yes;;0,5;10;;;70;0,3;;;;;;;;;;;;0;140;110;;;120;; Fu2007;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125–35. doi:10.1002/jbm.b.30997;water;HAP;cera;oxide;;;;;;;;yes;;0,5;20;;;55;0,45;;;;;;;;;;;;0;140;110;;;120;; Fu2007;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125–35. doi:10.1002/jbm.b.30997;water/glycerol;HAP;cera;oxide;;;;;;;;no;;0,5;10;;;67;0,33;;;;;;;;;;;;0;140;110;;;120;; Fu2007;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125–35. doi:10.1002/jbm.b.30997;water/glycerol;HAP;cera;oxide;;;;;;;;no;;0,5;20;;;46;0,54;;;;;;;;;;;;0;140;110;;;120;; Fu2007;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125–35. doi:10.1002/jbm.b.30997;water/dioxane;HAP;cera;oxide;;;;;;;;no;;0,5;10;;;65;0,35;;;;;;;;;;;;0;140;110;;;120;; Fu2007;Fu, Q., Rahaman, M. N., Dogan, F., & Bal, B. S. (2008). Freeze casting of porous hydroxyapatite scaffolds. I. Processing and general microstructure. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 125–35. doi:10.1002/jbm.b.30997;water/glycerol;HAP;cera;oxide;;;;;;;;no;;0,5;20;;;37;0,63;;;;;;;;;;;;0;140;110;;;120;; Chen2007a;Chen, R., Wang, C.-A., Huang, Y., Ma, L., & Lin, W. (2007). Ceramics with Special Porous Structures Fabricated by Freeze-Gelcasting: Using tert-Butyl Alcohol as a Template. Journal of the American Ceramic Society, 90(11), 3478–3484. doi:10.1111/j.1551-2916.2007.01957.x;TBA;alumina;cera;oxide;0;;;;;;?;no;no;;;;;58;0,42;;153;4;3;36;0,111111111111111;block;;0,5;;;0;2600;400;;0,3825;390;; Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;;;;;;cellular;no;no;;24;;;17,223;0,82777;67,468;;4;5;5;0,8;block;;0,2;;;0;140;110;0,613345454545455;;120;408,377253910632;0,562233333333333 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;;;;;;cellular;no;no;;24;;;24,032;0,75968;58,545;;4;5;5;0,8;block;;0,2;;;0;140;110;0,532227272727273;;120;315,663650956247;0,487875 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;;;;;;cellular;no;no;;24;;;32,001;0,67999;47,439;;4;5;5;0,8;block;;0,2;;;0;140;110;0,431263636363636;;120;226,381052306879;0,395325 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;;;;;;cellular;no;no;;24;;;36,742;0,63258;41,414;;4;5;5;0,8;block;;0,2;;;0;140;110;0,376490909090909;;120;182,254754714049;0,345116666666667 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;;;;;;cellular;no;no;;24;;;41,815;0,58185;29,122;;4;5;5;0,8;block;;0,2;;;0;140;110;0,264745454545455;;120;141,82918666677;0,242683333333333 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;5;;;;;cellular;no;no;;24;;;62,613;0,37387;26,768;;4;5;5;0,8;block;;0,2;;;0;140;110;0,243345454545455;;120;37,6265457501142;0,223066666666667 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;5;;;;;cellular;no;no;;24;;;60,287;0,39713;32,985;;4;5;5;0,8;block;;0,2;;;0;140;110;0,299863636363636;;120;45,0952276608698;0,274875 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;5;;;;;cellular;no;no;;24;;;58,118;0,41882;37,367;;4;5;5;0,8;block;;0,2;;;0;140;110;0,3397;;120;52,8950136822969;0,311391666666667 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;5;;;;;cellular;no;no;;24;;;56,127;0,43873;52,911;;4;5;5;0,8;block;;0,2;;;0;140;110;0,481009090909091;;120;60,8029279053242;0,440925 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;5;;;;;cellular;no;no;;24;;;56,194;0,43806;53,146;;4;5;5;0,8;block;;0,2;;;0;140;110;0,483145454545455;;120;60,5247902284435;0,442883333333333 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;1;;;37;;cellular;no;no;;24;;;56;0,44;18;;;;;;;;;;;;;;;;120;61,33248;0,15 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;5;;;21;;cellular;no;no;;24;;;56;0,44;46;;;;;;;;;;;;;;;;120;61,33248;0,383333333333333 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;7;;;15;;cellular;no;no;;24;;;56;0,44;61;;;;;;;;;;;;;;;;120;61,33248;0,508333333333333 Deville2006;Deville, S., Saiz, E., & Tomsia, A. P. (2006). Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials, 27(32), 5480–9. doi:10.1016/j.biomaterials.2006.06.028;water;HAP;cera;oxide;;10;;;15;;cellular;no;no;;24;;;56;0,44;60;;;;;;;;;;;;;;;;120;61,33248;0,5 Deng2007;Deng, Z.-Y., Fernandes, H. R., Ventura, J. M., Kannan, S., & Ferreira, J. M. F. (2007). Nano-TiO2 -Coated Unidirectional Porous Glass Structure Prepared by Freeze Drying and Solution Infiltration. Journal of the American Ceramic Society, 90(4), 1265–1268. doi:10.1111/j.1551-2916.2007.01602.x;water;titania;cera;oxide;-55;;;;;;;no;;6,4;25;;;69;0,31;;;; ;;;;;;;;0;700;400;;;;; Cao2009;Cao, Y., & He, J. (2009). Preparation and formation mechanism of porous ultralightweight zirconia by ice templating. Chinese Journal of Materials Research, 23(5).;water;zirconia;cera;oxide;-30;;;;55;;?;no;no;;;;;87;0,13;3,11;;;;;;;;;;;0;3000;800;0,0038875;;220;2,90004;0,0141363636363636 Bettge;Bettge, M., Niculescu, H., & Gielisse, P. J. (2005). Engineered porous ceramics using a directional freeze-drying process. 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. (pp. 28–34). IEEE. doi:10.1109/ISSE.2005.1490993;water;zirconia;cera;oxide;;;;;;;;no;;;3;;;90;0,1;;;;;;;;;;;;0;3000;800;;;220;; Bettge;Bettge, M., Niculescu, H., & Gielisse, P. J. (2005). Engineered porous ceramics using a directional freeze-drying process. 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. (pp. 28–34). IEEE. doi:10.1109/ISSE.2005.1490993;water;zirconia;cera;oxide;;;;;;;;no;;;7,5;;;83;0,17;;;;;;;;;;;;0;3000;800;;;220;; Bettge;Bettge, M., Niculescu, H., & Gielisse, P. J. (2005). Engineered porous ceramics using a directional freeze-drying process. 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. (pp. 28–34). IEEE. doi:10.1109/ISSE.2005.1490993;water;zirconia;cera;oxide;;;;;;;;no;;;10,5;;;78;0,22;;;;;;;;;;;;0;3000;800;;;220;; Bettge;Bettge, M., Niculescu, H., & Gielisse, P. J. (2005). Engineered porous ceramics using a directional freeze-drying process. 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, 2005. (pp. 28–34). IEEE. doi:10.1109/ISSE.2005.1490993;water;zirconia;cera;oxide;;;;;;;;no;;;15;;;40;0,6;;;;;;;;;;;;0;3000;800;;;220;; Araki2005;Araki, K., & Halloran, J. W. (2005). Porous Ceramic Bodies with Interconnected Pore Channels by a Novel Freeze Casting Technique. Journal of the American Ceramic Society, 88(5), 1108–1114. doi:10.1111/j.1551-2916.2005.00176.x;camphene;alumina;cera;oxide;18;;;;;;;no;;0,4;22,8;;;50,5;0,495;;;;;;;;;;;;0;2600;400;;;390;; Araki2005;Araki, K., & Halloran, J. W. (2005). Porous Ceramic Bodies with Interconnected Pore Channels by a Novel Freeze Casting Technique. Journal of the American Ceramic Society, 88(5), 1108–1114. doi:10.1111/j.1551-2916.2005.00176.x;camphene;alumina;cera;oxide;18;;;;;;;no;;0,4;33,4;;;40;0,6;;;;;;;;;;;;0;2600;400;;;390;; Araki2005;Araki, K., & Halloran, J. W. (2005). Porous Ceramic Bodies with Interconnected Pore Channels by a Novel Freeze Casting Technique. Journal of the American Ceramic Society, 88(5), 1108–1114. doi:10.1111/j.1551-2916.2005.00176.x;camphene;alumina;cera;oxide;18;;;;;;;no;;0,4;43,8;;;23,7;0,763;;;;;;;;;;;;0;2600;400;;;390;; Araki2005;Araki, K., & Halloran, J. W. (2005). Porous Ceramic Bodies with Interconnected Pore Channels by a Novel Freeze Casting Technique. Journal of the American Ceramic Society, 88(5), 1108–1114. doi:10.1111/j.1551-2916.2005.00176.x;camphene;alumina;cera;oxide;18;;;;;;;no;;0,4;52,5;;;0;1;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;19,934;;;52,8;0,472;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;19,934;;;58,5;0,415;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;20,083;;;60,7;0,393;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;29,914;;;26,9;0,731;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;30,205;;;32,6;0,674;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;29,920;;;37,8;0,622;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;40,302;;;1,8;0,982;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;40,153;;;13,8;0,862;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;40,153;;;25,5;0,745;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;48,305;;;1,3;0,987;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;48,007;;;9,5;0,905;;;;;;;;;;;;0;2600;400;;;390;; Araki2004a;Araki, K., & Halloran, J. W. (2004). Room-temperature freeze casting for ceramics with nonaqueous sublimable vehicles in the naphthalene–camphor eutectic system. Journal of the American Ceramic Society, 2019(10706), 2014–2019. doi:10.1111/j.1151-2916.2004.tb06353.x;naphtalene/camphor;alumina;cera;oxide;18;;;;;;;no;;0,4;48,007;;;12,3;0,877;;;;;;;;;;;;0;2600;400;;;390;; Araki2004;Araki, K., & Halloran, J. W. (2004). New freeze-casting technique for ceramics with sublimable vehicles. Journal of the American Ceramic Society, 87(10), 1859–1863. Retrieved from http://www3.interscience.wiley.com/journal/118743566/abstract;camphene;alumina;cera;oxide;18;;;;;;;no;;0,4;22,683;;;51,5;0,485;;;;;;;;;;;;0;2600;400;;;390;; Araki2004;Araki, K., & Halloran, J. W. (2004). New freeze-casting technique for ceramics with sublimable vehicles. Journal of the American Ceramic Society, 87(10), 1859–1863. Retrieved from http://www3.interscience.wiley.com/journal/118743566/abstract;camphene;alumina;cera;oxide;18;;;;;;;no;;0,4;33,631;;;41,1;0,589;;;;;;;;;;;;0;2600;400;;;390;; Araki2004;Araki, K., & Halloran, J. W. (2004). New freeze-casting technique for ceramics with sublimable vehicles. Journal of the American Ceramic Society, 87(10), 1859–1863. Retrieved from http://www3.interscience.wiley.com/journal/118743566/abstract;camphene;alumina;cera;oxide;18;;;;;;;no;;0,4;43,659;;;24,2;0,758;;;;;;;;;;;;0;2600;400;;;390;; Araki2004;Araki, K., & Halloran, J. W. (2004). New freeze-casting technique for ceramics with sublimable vehicles. Journal of the American Ceramic Society, 87(10), 1859–1863. Retrieved from http://www3.interscience.wiley.com/journal/118743566/abstract;camphene;alumina;cera;oxide;18;;;;;;;no;;0,4;52,276;;;0,7;0,993;;;;;;;;;;;;0;2600;400;;;390;; Zuo2008;Zuo, K., Zeng, Y.-P., & Jiang, D. (2008). Properties of Microstructure-Controllable Porous Yttria-Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198–203. doi:10.1111/j.1744-7402.2008.02190.x;water;zirconia;cera;oxide;-18;;;;80;;cellular;no;no;0,06;;75;;43,806;0,56194;23,497;;12,5;;8;1,5625;cylinder;0,628318530717959;2;;;0;3000;800;0,02937125;;220;234,230676437187;0,106804545454545 Zuo2008;Zuo, K., Zeng, Y.-P., & Jiang, D. (2008). Properties of Microstructure-Controllable Porous Yttria-Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198–203. doi:10.1111/j.1744-7402.2008.02190.x;water;zirconia;cera;oxide;-18;;;;;;cellular;no;no;0,06;;66,7;;58,133;0,41867;39,157;;12,5;;8;1,5625;cylinder;0,628318530717959;2;;;0;3000;800;0,04894625;;220;96,8700354089992;0,177986363636364 Zuo2008;Zuo, K., Zeng, Y.-P., & Jiang, D. (2008). Properties of Microstructure-Controllable Porous Yttria-Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198–203. doi:10.1111/j.1744-7402.2008.02190.x;water;zirconia;cera;oxide;-18;;;;;;cellular;no;no;0,06;;60;;60,828;0,39172;41,776;;12,5;;8;1,5625;cylinder;0,628318530717959;2;;;0;3000;800;0,05222;;220;79,3416391897113;0,189890909090909 Zuo2008;Zuo, K., Zeng, Y.-P., & Jiang, D. (2008). Properties of Microstructure-Controllable Porous Yttria-Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198–203. doi:10.1111/j.1744-7402.2008.02190.x;water;zirconia;cera;oxide;-18;;;;;;cellular;no;no;0,06;;54,6;;65,235;0,34765;28,253;;12,5;;8;1,5625;cylinder;0,628318530717959;2;;;0;3000;800;0,03531625;;220;55,462652054205;0,128422727272727 Zuo2008;Zuo, K., Zeng, Y.-P., & Jiang, D. (2008). Properties of Microstructure-Controllable Porous Yttria-Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198–203. doi:10.1111/j.1744-7402.2008.02190.x;water;zirconia;cera;oxide;-18;;;;60;;cellular;no;no;0,06;;75;;34,891;0,65109;39,875;;12,5;;8;1,5625;cylinder;0,628318530717959;2;;;0;3000;800;0,04984375;;220;364,331738878838;0,18125 Zuo2008;Zuo, K., Zeng, Y.-P., & Jiang, D. (2008). Properties of Microstructure-Controllable Porous Yttria-Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198–203. doi:10.1111/j.1744-7402.2008.02190.x;water;zirconia;cera;oxide;-18;;;;;;cellular;no;no;0,06;;66,7;;50,833;0,49167;58,221;;12,5;;8;1,5625;cylinder;0,628318530717959;2;;;0;3000;800;0,07277625;;220;156,889927049411;0,264640909090909 Zuo2008;Zuo, K., Zeng, Y.-P., & Jiang, D. (2008). Properties of Microstructure-Controllable Porous Yttria-Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198–203. doi:10.1111/j.1744-7402.2008.02190.x;water;zirconia;cera;oxide;-18;;;;;;cellular;no;no;0,06;;60;;53,669;0,46331;60,293;;12,5;;8;1,5625;cylinder;0,628318530717959;2;;;0;3000;800;0,07536625;;220;131,277093661152;0,274059090909091 Zuo2008;Zuo, K., Zeng, Y.-P., & Jiang, D. (2008). Properties of Microstructure-Controllable Porous Yttria-Stabilized Ziroconia Ceramics Fabricated by Freeze Casting. International Journal of Applied Ceramic Technology, 5(2), 198–203. doi:10.1111/j.1744-7402.2008.02190.x;water;zirconia;cera;oxide;-18;;;;;;cellular;no;no;0,06;;54,6;;49,935;0,50065;63,976;;12,5;;8;1,5625;cylinder;0,628318530717959;2;;;0;3000;800;0,07997;;220;165,644336912505;0,2908 Zhang2010;Zhang, Y., Hu, L., Han, J., & Jiang, Z. (2010). Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceramics International, 36(2), 617–621. doi:10.1016/j.ceramint.2009.09.036;water;alumina;cera;oxide;;6;;;9;;?;no;no;0,4;20;;;64,9;0,351;96,4;;5;4;4;1,25;cylinder;0,0628318530717959;1;;;0;2600;400;0,241;;390;101,18990934;0,247179487179487 Zhang2010;Zhang, Y., Hu, L., Han, J., & Jiang, Z. (2010). Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceramics International, 36(2), 617–621. doi:10.1016/j.ceramint.2009.09.036;water/glycerol;alumina;cera;oxide;;6;;;13;;?;no;no;0,4;20;;;64,1;0,359;127,6;;5;4;4;1,25;cylinder;0,0628318530717959;1;;;0;2600;400;0,319;;390;108,26777286;0,327179487179487 Zhang2010;Zhang, Y., Hu, L., Han, J., & Jiang, Z. (2010). Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceramics International, 36(2), 617–621. doi:10.1016/j.ceramint.2009.09.036;water;alumina;cera;oxide;;6;;;7;;?;no;no;0,4;30;;;49,3;0,507;194,2;;5;4;4;1,25;cylinder;0,0628318530717959;1;;;0;2600;400;0,4855;;390;304,95779262;0,497948717948718 Zhang2010;Zhang, Y., Hu, L., Han, J., & Jiang, Z. (2010). Freeze casting of aqueous alumina slurries with glycerol for porous ceramics. Ceramics International, 36(2), 617–621. doi:10.1016/j.ceramint.2009.09.036;water/glycerol;alumina;cera;oxide;;6;;;5;;?;no;no;0,4;30;;;48,2;0,518;255,1;;5;4;4;1,25;cylinder;0,0628318530717959;1;;;0;2600;400;0,63775;;390;325,24088688;0,654102564102564 Yoon2008a;Yoon, B.-H., Choi, W., Kim, H., Kim, J., & Koh, Y. (2008). Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta Materialia, 58(7), 537–540. doi:10.1016/j.scriptamat.2007.11.006;camphene;alumina;cera;oxide;3;;;;210;;?;no;no;0,3;10,050;;;81,884;0,18116;11;;9;6;6;1,5;block;;1;;;0;2600;400;0,0275;;390;13,9124236326566;0,0282051282051282 Yoon2008a;Yoon, B.-H., Choi, W., Kim, H., Kim, J., & Koh, Y. (2008). Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta Materialia, 58(7), 537–540. doi:10.1016/j.scriptamat.2007.11.006;camphene;alumina;cera;oxide;3;;;;153;;?;no;no;0,3;14,888;;;74,194;0,25806;24,2;;9;6;6;1,5;block;;1;;;0;2600;400;0,0605;;390;40,2140613574814;0,062051282051282 Yoon2008a;Yoon, B.-H., Choi, W., Kim, H., Kim, J., & Koh, Y. (2008). Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta Materialia, 58(7), 537–540. doi:10.1016/j.scriptamat.2007.11.006;camphene;alumina;cera;oxide;3;;;;138;;?;no;no;0,3;20,078;;;65,127;0,34873;48,7;;9;6;6;1,5;block;;1;;;0;2600;400;0,12175;;390;99,2393216020838;0,124871794871795 Yoon2008a;Yoon, B.-H., Choi, W., Kim, H., Kim, J., & Koh, Y. (2008). Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scripta Materialia, 58(7), 537–540. doi:10.1016/j.scriptamat.2007.11.006;camphene;alumina;cera;oxide;3;;;;102;;?;no;no;0,3;24,922;;;59,017;0,40983;93,8;;9;6;6;1,5;block;;1;;;0;2600;400;0,2345;;390;161,074612628484;0,24051282051282 Yoon2007a;Yoon, B.-H., Park, C.-S., Kim, H.-E., & Koh, Y.-H. (2007). In Situ Synthesis of Porous Silicon Carbide (SiC) Ceramics Decorated with SiC Nanowires. Journal of the American Ceramic Society, 908(12), 3759–3766. doi:10.1111/j.1551-2916.2007.02037.x;camphene;silicon carbide;cera;covalent;3;;;;12;;?;no;no;0,3;10;;;86;0,14;1,6;;15;;12;1,25;cylinder;1,69646003293849;5;;;0;3900;450;0,00355555555555556;;410;6,75024;0,00390243902439024 Yoon2007a;Yoon, B.-H., Park, C.-S., Kim, H.-E., & Koh, Y.-H. (2007). In Situ Synthesis of Porous Silicon Carbide (SiC) Ceramics Decorated with SiC Nanowires. Journal of the American Ceramic Society, 908(12), 3759–3766. doi:10.1111/j.1551-2916.2007.02037.x;camphene;silicon carbide;cera;covalent;3;;;;12;;?;no;no;0,3;;;;74;0,26;2,3;;15;;12;1,25;cylinder;1,69646003293849;5;;;0;3900;450;0,00511111111111111;;410;43,23696;0,00560975609756098 Yoon2007a;Yoon, B.-H., Park, C.-S., Kim, H.-E., & Koh, Y.-H. (2007). In Situ Synthesis of Porous Silicon Carbide (SiC) Ceramics Decorated with SiC Nanowires. Journal of the American Ceramic Society, 908(12), 3759–3766. doi:10.1111/j.1551-2916.2007.02037.x;camphene;silicon carbide;cera;covalent;3;;;;14;;?;no;no;0,3;;;;78;0,22;4,76;;15;;12;1,25;cylinder;1,69646003293849;5;;;0;3900;450;0,0105777777777778;;410;26,19408;0,011609756097561 Yoon2007b;Yoon, B.-H., Koh, Y.-H., Park, C.-S., & Kim, H.-E. (2007). Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene-Based Freeze Casting. Journal of the American Ceramic Society, 90(6), 1744–1752. doi:10.1111/j.1551-2916.2007.01670.x;camphene;HAP;cera;oxide;;;;;175;;?;no;no;;10;;;76,1;0,239;2,5;;12;;10;1,2;cylinder;0,942477796076938;5;;;0;140;110;0,0227272727272727;;120;9,82938168;0,0208333333333333 Yoon2007b;Yoon, B.-H., Koh, Y.-H., Park, C.-S., & Kim, H.-E. (2007). Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene-Based Freeze Casting. Journal of the American Ceramic Society, 90(6), 1744–1752. doi:10.1111/j.1551-2916.2007.01670.x;camphene;HAP;cera;oxide;;;;;125;;?;no;no;;15;;;67,1;0,329;9;;12;;10;1,2;cylinder;0,942477796076938;5;;;0;140;110;0,0818181818181818;;120;25,64012808;0,075 Yoon2007b;Yoon, B.-H., Koh, Y.-H., Park, C.-S., & Kim, H.-E. (2007). Generation of Large Pore Channels for Bone Tissue Engineering Using Camphene-Based Freeze Casting. Journal of the American Ceramic Society, 90(6), 1744–1752. doi:10.1111/j.1551-2916.2007.01670.x;camphene;HAP;cera;oxide;;;;;107;;?;no;no;;20;;;55,2;0,448;16,7;;12;;10;1,2;cylinder;0,942477796076938;5;;;0;140;110;0,151818181818182;;120;64,73908224;0,139166666666667 Yook2009;Yook, S.-W., Kim, H.-E., & Koh, Y.-H. (2009). Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Materials Letters, 63(17), 1502–1504. doi:10.1016/j.matlet.2009.03.056;camphene;Ti;metal;;42;;;;271;;?;no;no;;10;;;64;0,36;48;;7;5;5;1,4;block;;5;;;0;900;900;0,0533333333333333;;116;32,472576;0,413793103448276 Yook2009;Yook, S.-W., Kim, H.-E., & Koh, Y.-H. (2009). Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Materials Letters, 63(17), 1502–1504. doi:10.1016/j.matlet.2009.03.056;camphene;Ti;metal;;42;;;;225;;?;no;no;;10;;;64;0,36;70;;7;5;5;1,4;block;;5;;;0;900;900;0,0777777777777778;;116;32,472576;0,603448275862069 Yook2009;Yook, S.-W., Kim, H.-E., & Koh, Y.-H. (2009). Fabrication of porous titanium scaffolds with high compressive strength using camphene-based freeze casting. Materials Letters, 63(17), 1502–1504. doi:10.1016/j.matlet.2009.03.056;camphene;Ti;metal;;42;;;;144;;?;no;no;;10;;;64;0,36;110;;7;5;5;1,4;block;;5;;;0;900;900;0,122222222222222;;116;32,472576;0,948275862068966 Yook2009a;Yook, S.-W., Kim, H.-E., Yoon, B.-H., Soon, Y.-M., & Koh, Y.-H. (2009). Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries. Materials Letters, 63(11), 955–958. doi:10.1016/j.matlet.2009.01.080;camphene;HAP;cera;oxide;34;;;;275;;?;no;no;;;31;;71;0,29;1,1;;12;;10;1,2;;;5;;;0;140;110;0,01;;120;17,56008;0,00916666666666667 Yook2009a;Yook, S.-W., Kim, H.-E., Yoon, B.-H., Soon, Y.-M., & Koh, Y.-H. (2009). Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries. Materials Letters, 63(11), 955–958. doi:10.1016/j.matlet.2009.01.080;camphene;HAP;cera;oxide;34;;;;225;;?;no;no;;;;;72;0,28;1,5;;12;;10;1,2;;;5;;;0;140;110;0,0136363636363636;;120;15,80544;0,0125 Yook2009a;Yook, S.-W., Kim, H.-E., Yoon, B.-H., Soon, Y.-M., & Koh, Y.-H. (2009). Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries. Materials Letters, 63(11), 955–958. doi:10.1016/j.matlet.2009.01.080;camphene;HAP;cera;oxide;34;;;;175;;?;no;no;;;;;73;0,27;2,3;;12;;10;1,2;;;5;;;0;140;110;0,0209090909090909;;120;14,17176;0,0191666666666667 Yook2009a;Yook, S.-W., Kim, H.-E., Yoon, B.-H., Soon, Y.-M., & Koh, Y.-H. (2009). Improvement of compressive strength of porous hydroxyapatite scaffolds by adding polystyrene to camphene-based slurries. Materials Letters, 63(11), 955–958. doi:10.1016/j.matlet.2009.01.080;camphene;HAP;cera;oxide;34;;;;140;;?;no;no;;;;;73;0,27;1,6;;12;;10;1,2;;;5;;;0;140;110;0,0145454545454545;;120;14,17176;0,0133333333333333 Yang2010a;Yang, T. Y., Ji, H. B., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries. Resources, Conservation and Recycling, 54(11), 816–820. doi:10.1016/j.resconrec.2009.12.012;TBA;mullite;cera;oxide;0;;;;;;?;no;no;;;50;;71,4;0,286;12,4;;10;;26;0,384615384615385;cylinder;5,30929158456675;1;;;0;1300;320;0,03875;;150;21,0542904;0,0826666666666667 Yang2010a;Yang, T. Y., Ji, H. B., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries. Resources, Conservation and Recycling, 54(11), 816–820. doi:10.1016/j.resconrec.2009.12.012;TBA;mullite;cera;oxide;0;;;;;;?;no;no;;;50;;67,8;0,322;14;;10;;26;0,384615384615385;cylinder;5,30929158456675;1;;;0;1300;320;0,04375;;150;30,0476232;0,0933333333333333 Yang2010a;Yang, T. Y., Ji, H. B., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Porous mullite composite with controlled pore structure processed using a freeze casting of TBA-based coal fly ash slurries. Resources, Conservation and Recycling, 54(11), 816–820. doi:10.1016/j.resconrec.2009.12.012;TBA;mullite;cera;oxide;0;;;;;;?;no;no;;;50;;66,9;0,331;23,2;;10;;26;0,384615384615385;cylinder;5,30929158456675;1;;;0;1300;320;0,0725;;150;32,6382219;0,154666666666667 Tang2010a;Tang, Y. F., Zhao, K., Wei, J.-Q., & Qin, Y. S. (2010). Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. Journal of the European Ceramic Society, 30(9), 1963–1965. doi:10.1016/j.jeurceramsoc.2010.03.012;water;alumina;cera;oxide;0;;;;;;;no;;1;30;;;77,1;0,229;;;;;;;;;;;;0;2600;400;;;390;; Tang2010a;Tang, Y. F., Zhao, K., Wei, J.-Q., & Qin, Y. S. (2010). Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. Journal of the European Ceramic Society, 30(9), 1963–1965. doi:10.1016/j.jeurceramsoc.2010.03.012;water;alumina;cera;oxide;;;;;;;;no;;1;30;;;78,2;0,218;;;;;;;;;;;;0;2600;400;;;390;; Tang2010a;Tang, Y. F., Zhao, K., Wei, J.-Q., & Qin, Y. S. (2010). Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. Journal of the European Ceramic Society, 30(9), 1963–1965. doi:10.1016/j.jeurceramsoc.2010.03.012;water;alumina;cera;oxide;;;;;;;;no;;1;30;;;77,9;0,221;;;;;;;;;;;;0;2600;400;;;390;; Tang2010a;Tang, Y. F., Zhao, K., Wei, J.-Q., & Qin, Y. S. (2010). Fabrication of aligned lamellar porous alumina using directional solidification of aqueous slurries with an applied electrostatic field. Journal of the European Ceramic Society, 30(9), 1963–1965. doi:10.1016/j.jeurceramsoc.2010.03.012;water;alumina;cera;oxide;;;;;;;;no;;1;30;;;78,9;0,211;;;;;;;;;;;;0;2600;400;;;390;; Tallon2009;Tallón, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307–313. doi:10.1179/174367608X369280;water/glycerol;alumina;cera;oxide;-196;;;;;;;no;;0,35;20;;;50;0,5;;;;;;;;;;;;0;2600;400;;;390;; Tallon2009;Tallón, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307–313. doi:10.1179/174367608X369280;water/glycerol;alumina;cera;oxide;-196;;;;;;;no;;0,35;35;;;41;0,59;;;;;;;;;;;;0;2600;400;;;390;; Tallon2009;Tallón, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307–313. doi:10.1179/174367608X369280;water/glycerol;alumina;cera;oxide;-196;;;;;;;no;;0,35;50;;;23;0,77;;;;;;;;;;;;0;2600;400;;;390;; Tallon2009;Tallón, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307–313. doi:10.1179/174367608X369280;water/glycerol;alumina;cera;oxide;-196;;;;;;;no;;0,35;35;;;46;0,54;;;;;;;;;;;;0;2600;400;;;390;; Tallon2009;Tallón, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307–313. doi:10.1179/174367608X369280;water/glycerol;alumina;cera;oxide;-196;;;;;;;no;;0,35;35;;;43;0,57;;;;;;;;;;;;0;2600;400;;;390;; Tallon2009;Tallón, C., Moreno, R., & Nieto, I. M. (2009). Shaping of porous alumina bodies by freeze casting. Advances in Applied Ceramics, 108(5), 307–313. doi:10.1179/174367608X369280;water/glycerol;alumina;cera;oxide;-20;;;;;;;no;;0,35;35;;;43;0,57;;;;;;;;;;;;0;2600;400;;;390;; Suetsugu2007;Suetsugu, Y., Hotta, Y., Iwasashi, M., Sakane, M., Kikuchi, M., Ikoma, T., … Tanaka, J. (2007). Structural and Tissue Reaction Properties of Novel Hydroxyapatite Ceramics with Unidirectional Pores. Key Engineering Materials, 330-332, 1003–1006. doi:10.4028/www.scientific.net/KEM.330-332.1003;water;HAP;cera;oxide;;;;;;;?;no;no;0,1;;;;75;0,25;10,9;;;;;;;;;;;0;140;110;0,0990909090909091;;120;11,25;0,0908333333333333 Song2006;Song, J.-H., Koh, Y.-H., Kim, H.-E., Li, L.-H., & Bahn, H.-J. (2006). Fabrication of a Porous Bioactive Glass–Ceramic Using Room-Temperature Freeze Casting. Journal of the American Ceramic Society, 89(8), 2649–2653. doi:10.1111/j.1551-2916.2006.01092.x;camphene;bioglass;glass;oxide;20;;;;;;;no;;;20;;;48;0,52;;;;;;;;;;;;0;500;100;;;;; Song2006;Song, J.-H., Koh, Y.-H., Kim, H.-E., Li, L.-H., & Bahn, H.-J. (2006). Fabrication of a Porous Bioactive Glass–Ceramic Using Room-Temperature Freeze Casting. Journal of the American Ceramic Society, 89(8), 2649–2653. doi:10.1111/j.1551-2916.2006.01092.x;camphene;bioglass;glass;oxide;20;;;;;;;no;;;20;;;53;0,47;;;;;;;;;;;;0;500;100;;;;; Soon2009;Soon, Y.-M., Shin, K.-H., Koh, Y.-H., Lee, J.-H., & Kim, H.-E. (2009). Compressive strength and processing of camphene-based freeze cast calcium phosphate scaffolds with aligned pores. Materials Letters, 63(17), 1548–1550. doi:10.1016/j.matlet.2009.04.013;camphene;HAP;cera;oxide;32;;;;;;?;no;no;;20;;;62;0,38;9,3;;;;;;;;;;;0;140;110;0,0845454545454545;;120;39,50784;0,0775 Soon2009;Soon, Y.-M., Shin, K.-H., Koh, Y.-H., Lee, J.-H., & Kim, H.-E. (2009). Compressive strength and processing of camphene-based freeze cast calcium phosphate scaffolds with aligned pores. Materials Letters, 63(17), 1548–1550. doi:10.1016/j.matlet.2009.04.013;camphene;HAP;cera;oxide;32;;;;;;?;no;no;;20;;;63;0,37;8,6;;;;;;;;;;;0;140;110;0,0781818181818182;;120;36,47016;0,0716666666666667 Soon2009;Soon, Y.-M., Shin, K.-H., Koh, Y.-H., Lee, J.-H., & Kim, H.-E. (2009). Compressive strength and processing of camphene-based freeze cast calcium phosphate scaffolds with aligned pores. Materials Letters, 63(17), 1548–1550. doi:10.1016/j.matlet.2009.04.013;camphene;HAP;cera;oxide;32;;;;;;?;no;no;;20;;;65;0,35;6,2;;;;;;;;;;;0;140;110;0,0563636363636364;;120;30,87;0,0516666666666667 Rahaman2008;Rahaman, M. N., & Fu, Q. (2008). Manipulation of Porous Bioceramic Microstructures by Freezing of Suspensions Containing Binary Mixtures of Solvents. Journal of the American Ceramic Society, 91(12), 4137–4140. doi:10.1111/j.1551-2916.2008.02795.x;water;HAP;cera;oxide;-20;;;;;;;no;;0,5;10;;;70;0,3;;;;;;;;;;;;0;140;110;;;120;; Rahaman2008;Rahaman, M. N., & Fu, Q. (2008). Manipulation of Porous Bioceramic Microstructures by Freezing of Suspensions Containing Binary Mixtures of Solvents. Journal of the American Ceramic Society, 91(12), 4137–4140. doi:10.1111/j.1551-2916.2008.02795.x;water/dioxane;HAP;cera;oxide;-20;;;;;;;no;;0,5;10;;;45;0,55;;;;;;;;;;;;0;140;110;;;120;; Rahaman2008;Rahaman, M. N., & Fu, Q. (2008). Manipulation of Porous Bioceramic Microstructures by Freezing of Suspensions Containing Binary Mixtures of Solvents. Journal of the American Ceramic Society, 91(12), 4137–4140. doi:10.1111/j.1551-2916.2008.02795.x;water/dioxane;HAP;cera;oxide;-20;;;;;;;no;;0,5;10;;;68;0,32;;;;;;;;;;;;0;140;110;;;120;; Rahaman2008;Rahaman, M. N., & Fu, Q. (2008). Manipulation of Porous Bioceramic Microstructures by Freezing of Suspensions Containing Binary Mixtures of Solvents. Journal of the American Ceramic Society, 91(12), 4137–4140. doi:10.1111/j.1551-2916.2008.02795.x;water/dioxane;HAP;cera;oxide;-20;;;;;;;no;;0,5;10;;;65;0,35;;;;;;;;;;;;0;140;110;;;120;; Rahaman2008;Rahaman, M. N., & Fu, Q. (2008). Manipulation of Porous Bioceramic Microstructures by Freezing of Suspensions Containing Binary Mixtures of Solvents. Journal of the American Ceramic Society, 91(12), 4137–4140. doi:10.1111/j.1551-2916.2008.02795.x;water/dioxane;HAP;cera;oxide;-20;;;;;;;no;;0,5;10;;;63;0,37;;;;;;;;;;;;0;140;110;;;120;; Rahaman2008;Rahaman, M. N., & Fu, Q. (2008). Manipulation of Porous Bioceramic Microstructures by Freezing of Suspensions Containing Binary Mixtures of Solvents. Journal of the American Ceramic Society, 91(12), 4137–4140. doi:10.1111/j.1551-2916.2008.02795.x;water/glycerol;HAP;cera;oxide;-20;;;;;;;no;;0,5;10;;;68;0,32;;;;;;;;;;;;0;140;110;;;120;; Rahaman2008;Rahaman, M. N., & Fu, Q. (2008). Manipulation of Porous Bioceramic Microstructures by Freezing of Suspensions Containing Binary Mixtures of Solvents. Journal of the American Ceramic Society, 91(12), 4137–4140. doi:10.1111/j.1551-2916.2008.02795.x;water/glycerol;HAP;cera;oxide;-20;;;;;;;no;;0,5;10;;;67;0,33;;;;;;;;;;;;0;140;110;;;120;; Moon2003;Moon, J.-W., Hwang, H.-J., Awano, M., & Maeda, K. (2003). Preparation of NiO/YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428–1434. doi:10.1016/S0167-577X(02)01002-9;water;NiO-YSZ;cermet;;-30;;;;;;;no;;;30;;;73,053;0,26947;;;;;;;;;;;;1;;;;;;; Moon2003;Moon, J.-W., Hwang, H.-J., Awano, M., & Maeda, K. (2003). Preparation of NiO/YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428–1434. doi:10.1016/S0167-577X(02)01002-9;water;NiO-YSZ;cermet;;-30;;;;;;;no;;;40;;;64,805;0,35195;;;;;;;;;;;;1;;;;;;; Moon2003;Moon, J.-W., Hwang, H.-J., Awano, M., & Maeda, K. (2003). Preparation of NiO/YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428–1434. doi:10.1016/S0167-577X(02)01002-9;water;NiO-YSZ;cermet;;-30;;;;;;;no;;;50;;;56,374;0,43626;;;;;;;;;;;;1;;;;;;; Moon2003;Moon, J.-W., Hwang, H.-J., Awano, M., & Maeda, K. (2003). Preparation of NiO/YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428–1434. doi:10.1016/S0167-577X(02)01002-9;water;NiO-YSZ;cermet;;-30;;;;;;;no;;;30;;;58,074;0,41926;;;;;;;;;;;;0;;;;;;; Moon2003;Moon, J.-W., Hwang, H.-J., Awano, M., & Maeda, K. (2003). Preparation of NiO/YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428–1434. doi:10.1016/S0167-577X(02)01002-9;water;NiO-YSZ;cermet;;-30;;;;;;;no;;;40;;;47,294;0,52706;;;;;;;;;;;;0;;;;;;; Moon2003;Moon, J.-W., Hwang, H.-J., Awano, M., & Maeda, K. (2003). Preparation of NiO/YSZ tubular support with radially aligned pore channels. Materials Letters, 57(8), 1428–1434. doi:10.1016/S0167-577X(02)01002-9;water;NiO-YSZ;cermet;;-30;;;;;;;no;;;50;;;35,314;0,64686;;;;;;;;;;;;0;;;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;bioglass;glass;oxide;;;;;;;;no;;2;20;;;68,930;0,311;;;;;;;;;;;;0;500;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;bioglass;glass;oxide;;;;;;;;no;;2;30;;;56,822;0,43178;;;;;;;;;;;;0;500;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;bioglass;glass;oxide;;;;;;;;no;;2;40;;;42,840;0,572;;;;;;;;;;;;0;500;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;bioglass;glass;oxide;;;;;;;;no;;2;50;;;28,794;0,71206;;;;;;;;;;;;0;500;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;bioglass;glass;oxide;;;;;;;;no;;2;60;;;15,314;0,84686;;;;;;;;;;;;0;500;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;bioglass/HAP;cera;oxide;;;;;;;;no;;2;20;;;64,897;0,35103;;;;;;;;;;;;0;140;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;bioglass/HAP;cera;oxide;;;;;;;;no;;2;30;;;52,187;0,47813;;;;;;;;;;;;0;140;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;bioglass/HAP;cera;oxide;;;;;;;;no;;2;40;;;38,989;0,61011;;;;;;;;;;;;0;140;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;bioglass/HAP;cera;oxide;;;;;;;;no;;2;50;;;24,950;0,751;;;;;;;;;;;;0;140;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;bioglass/HAP;cera;oxide;;;;;;;;no;;2;60;;;11,911;0,88089;;;;;;;;;;;;0;140;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;HA/TCP;cera;oxide;;;;;;;;no;;3;20;;;62,901;0,37099;;;;;;;;;;;;0;140;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;HA/TCP;cera;oxide;;;;;;;;no;;3;30;;;49,771;0,50229;;;;;;;;;;;;0;140;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;HA/TCP;cera;oxide;;;;;;;;no;;3;40;;;34,790;0,652;;;;;;;;;;;;0;140;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;HA/TCP;cera;oxide;;;;;;;;no;;3;50;;;22,907;0,77093;;;;;;;;;;;;0;140;100;;;;; Mallick2009;Mallick, K. K. (2009). Freeze Casting of Porous Bioactive Glass and Bioceramics. Journal of the American Ceramic Society, 92, S85–S94. doi:10.1111/j.1551-2916.2008.02784.x;camphene;HA/TCP;cera;oxide;;;;;;;;no;;3;60;;;10,034;0,89966;;;;;;;;;;;;0;140;100;;;;; Macchetta2009;Macchetta, A., Turner, I. G., & Bowen, C. R. (2009). Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomaterialia, 5(4), 1319–27. doi:10.1016/j.actbio.2008.11.009;camphene;HA/TCP;cera;oxide;23;;;;35;;?;no;no;3;10;;;72,2;0,278;2,3;;15;;10;1,5;cylinder;1,17809724509617;10;;;0;140;100;0,023;;120;15,46916544;0,0191666666666667 Macchetta2009;Macchetta, A., Turner, I. G., & Bowen, C. R. (2009). Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomaterialia, 5(4), 1319–27. doi:10.1016/j.actbio.2008.11.009;camphene;HA/TCP;cera;oxide;23;;;;25;;?;no;no;3;20;;;45,6;0,544;13,2;;15;;10;1,5;cylinder;1,17809724509617;10;;;0;140;100;0,132;;120;115,91221248;0,11 Macchetta2009;Macchetta, A., Turner, I. G., & Bowen, C. R. (2009). Fabrication of HA/TCP scaffolds with a graded and porous structure using a camphene-based freeze-casting method. Acta Biomaterialia, 5(4), 1319–27. doi:10.1016/j.actbio.2008.11.009;camphene;HA/TCP;cera;oxide;23;;;;21;;?;no;no;3;30;;;31,3;0,687;36,3;;15;;10;1,5;cylinder;1,17809724509617;10;;;0;140;100;0,363;;120;233,45474616;0,3025 Liu2010a;Liu, G., Zhang, D., Meggs, C., & Button, T. W. (2010). Porous Al2O3–ZrO2 composites fabricated by an ice template method. Scripta Materialia, 62(7), 466–468. doi:10.1016/j.scriptamat.2009.12.018;water;alumina/zirconia;cera;oxide;-196;;110;;14;;?;?;no;0,7;;40;;74;0,26;15;;4;5;5;0,8;block;;;;;0;2800;600;0,025;;254;26,785824;0,0590551181102362 Liu2010a;Liu, G., Zhang, D., Meggs, C., & Button, T. W. (2010). Porous Al2O3–ZrO2 composites fabricated by an ice template method. Scripta Materialia, 62(7), 466–468. doi:10.1016/j.scriptamat.2009.12.018;water;alumina/zirconia;cera;oxide;-196;;110;;14;;?;?;no;0,7;;50;;67;0,33;26;;4;5;5;0,8;block;;;;;0;2800;600;0,0433333333333333;;254;54,767988;0,102362204724409 Liu2010a;Liu, G., Zhang, D., Meggs, C., & Button, T. W. (2010). Porous Al2O3–ZrO2 composites fabricated by an ice template method. Scripta Materialia, 62(7), 466–468. doi:10.1016/j.scriptamat.2009.12.018;water;alumina/zirconia;cera;oxide;-196;;110;;12;;?;?;no;0,7;;60;;50;0,5;50;;4;5;5;0,8;block;;;;;0;2800;600;0,0833333333333333;;254;190,5;0,196850393700787 Liu2010a;Liu, G., Zhang, D., Meggs, C., & Button, T. W. (2010). Porous Al2O3–ZrO2 composites fabricated by an ice template method. Scripta Materialia, 62(7), 466–468. doi:10.1016/j.scriptamat.2009.12.018;water;alumina/zirconia;cera;oxide;-196;;110;;10;;?;?;no;0,7;;70;;35;0,65;81;;4;5;5;0,8;block;;;;;0;2800;600;0,135;;254;418,5285;0,318897637795276 Liu2010a;Liu, G., Zhang, D., Meggs, C., & Button, T. W. (2010). Porous Al2O3–ZrO2 composites fabricated by an ice template method. Scripta Materialia, 62(7), 466–468. doi:10.1016/j.scriptamat.2009.12.018;water;alumina/zirconia;cera;oxide;-196;;110;;;;?;?;no;0,7;;80;;19;0,81;163;;4;5;5;0,8;block;;;;;0;2800;600;0,271666666666667;;254;809,916084;0,641732283464567 Lee2007;Lee, E.-J., Koh, Y.-H., Yoon, B.-H., Kim, H.-E., & Kim, H.-W. (2007). Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Materials Letters, 61(11-12), 2270–2273. doi:10.1016/j.matlet.2006.08.065;camphene;HAP;cera;oxide;20;;;;;;;no;;;10;;;75;0,25;;;15;;10;1,5;cylinder;1,17809724509617;10;;;0;140;110;;;120;; Lee2007;Lee, E.-J., Koh, Y.-H., Yoon, B.-H., Kim, H.-E., & Kim, H.-W. (2007). Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Materials Letters, 61(11-12), 2270–2273. doi:10.1016/j.matlet.2006.08.065;camphene;HAP;cera;oxide;20;;;;;;;no;;;15;;;66;0,34;;;15;;10;1,5;cylinder;1,17809724509617;10;;;0;140;110;;;120;; Lee2007;Lee, E.-J., Koh, Y.-H., Yoon, B.-H., Kim, H.-E., & Kim, H.-W. (2007). Highly porous hydroxyapatite bioceramics with interconnected pore channels using camphene-based freeze casting. Materials Letters, 61(11-12), 2270–2273. doi:10.1016/j.matlet.2006.08.065;camphene;HAP;cera;oxide;20;;;;;;;no;;;20;;;56,2;0,438;;;15;;10;1,5;cylinder;1,17809724509617;10;;;0;140;110;;;120;; Lee2008;Lee, S.-H., Jun, S.-H., Kim, H.-E., & Koh, Y.-H. (2008). Piezoelectric Properties of PZT-Based Ceramic with Highly Aligned Pores. Journal of the American Ceramic Society, 91(6), 1912–1915. doi:10.1111/j.1551-2916.2008.02359.x;camphene;PZT;cera;oxide;20;;;;;;;no;;;5;;;90;0,1;;;;;;;;;;;;0;500;80;;;;; Lee2007a;Lee, S.-H., Jun, S.-H., Kim, H.-E., & Koh, Y.-H. (2007). Fabrication of Porous PZT-PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene-Based Freeze Casting. Journal of the American Ceramic Society, 90(9), 2807–2813. doi:10.1111/j.1551-2916.2007.01834.x;camphene;PZT;cera;oxide;18;;;;;;;no;;;25;;;50,293;0,49707;;;;;;;;;;;;0;500;80;;;;; Lee2007a;Lee, S.-H., Jun, S.-H., Kim, H.-E., & Koh, Y.-H. (2007). Fabrication of Porous PZT-PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene-Based Freeze Casting. Journal of the American Ceramic Society, 90(9), 2807–2813. doi:10.1111/j.1551-2916.2007.01834.x;camphene;PZT;cera;oxide;18;;;;;;;no;;;20;;;61,387;0,38613;;;;;;;;;;;;0;500;80;;;;; Lee2007a;Lee, S.-H., Jun, S.-H., Kim, H.-E., & Koh, Y.-H. (2007). Fabrication of Porous PZT-PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene-Based Freeze Casting. Journal of the American Ceramic Society, 90(9), 2807–2813. doi:10.1111/j.1551-2916.2007.01834.x;camphene;PZT;cera;oxide;18;;;;;;;no;;;15;;;71,431;0,28569;;;;;;;;;;;;0;500;80;;;;; Lee2007a;Lee, S.-H., Jun, S.-H., Kim, H.-E., & Koh, Y.-H. (2007). Fabrication of Porous PZT-PZN Piezoelectric Ceramics With High Hydrostatic Figure of Merits Using Camphene-Based Freeze Casting. Journal of the American Ceramic Society, 90(9), 2807–2813. doi:10.1111/j.1551-2916.2007.01834.x;camphene;PZT;cera;oxide;18;;;;;;;no;;;10;;;82,259;0,17741;;;;;;;;;;;;0;500;80;;;;; Koh2007;Koh, Y.-H., Sun, J.-J., & Kim, H.-E. (2007). Freeze casting of porous Ni–YSZ cermets. Materials Letters, 61(6), 1283–1287. doi:10.1016/j.matlet.2006.07.009;camphene;NiO-YSZ;cera;;20;;;;;;;no;;;20;;;56;0,44;;;;;;;;;;;;0;;;;;;; Ji2010;Ji, H. Bin, Kim, W. Y., Yang, T., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Freeze casting of aqueous coal fly ash/alumina slurries for preparation of porous ceramics. Journal of Physics and Chemistry of Solids, 71(4), 503–506. doi:10.1016/j.jpcs.2009.12.022;water;mullite;cera;oxide;-196;;;;;;?;no;no;;;10;;66,9;0,331;26,7;;;;;;;;14;;;0;1300;320;0,0834375;;150;32,6382219;0,178 Ji2010;Ji, H. Bin, Kim, W. Y., Yang, T., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Freeze casting of aqueous coal fly ash/alumina slurries for preparation of porous ceramics. Journal of Physics and Chemistry of Solids, 71(4), 503–506. doi:10.1016/j.jpcs.2009.12.022;water;mullite;cera;oxide;-196;;;;;;?;no;no;;;10;;64,7;0,353;28,1;;;;;;;;1;;;0;1300;320;0,0878125;;150;39,5882793;0,187333333333333 Ji2010;Ji, H. Bin, Kim, W. Y., Yang, T., Yoon, S. Y., Kim, B. K., & Park, H. C. (2010). Freeze casting of aqueous coal fly ash/alumina slurries for preparation of porous ceramics. Journal of Physics and Chemistry of Solids, 71(4), 503–506. doi:10.1016/j.jpcs.2009.12.022;water;mullite;cera;oxide;-196;;;;;;?;no;no;;;10;;54,8;0,452;36,3;;;;;;;;1;;;0;1300;320;0,1134375;;150;83,1108672;0,242 Hong2010a;Hong, C., Zhang, X., Han, J., Du, J., & Zhang, W. (2010). Camphene-based freeze-cast ZrO2 foam with high compressive strength. Materials Chemistry and Physics, 119(3), 359–362. doi:10.1016/j.matchemphys.2009.10.031;camphene;zirconia;cera;oxide;15;;;;20;;?;no;no;0,8;10;;;81,9;0,181;19,4;;10;;8;1,25;cylinder;0,502654824574367;0,05;;;0;3000;800;0,02425;;220;7,82725811999999;0,0881818181818182 Hong2010a;Hong, C., Zhang, X., Han, J., Du, J., & Zhang, W. (2010). Camphene-based freeze-cast ZrO2 foam with high compressive strength. Materials Chemistry and Physics, 119(3), 359–362. doi:10.1016/j.matchemphys.2009.10.031;camphene;zirconia;cera;oxide;15;;;;15;;?;no;no;0,8;15;;;72,9;0,271;33,1;;10;;8;1,25;cylinder;0,502654824574367;0,05;;;0;3000;800;0,041375;;220;26,27131452;0,150454545454545 Hong2010a;Hong, C., Zhang, X., Han, J., Du, J., & Zhang, W. (2010). Camphene-based freeze-cast ZrO2 foam with high compressive strength. Materials Chemistry and Physics, 119(3), 359–362. doi:10.1016/j.matchemphys.2009.10.031;camphene;zirconia;cera;oxide;15;;;;10;;?;no;no;0,8;20;;;66;0,34;57,9;;10;;8;1,25;cylinder;0,502654824574367;0,05;;;0;3000;800;0,072375;;220;51,88128;0,263181818181818 Hong2009;Hong, C., Zhang, X., Han, J., Du, J., & Han, W. (2009). Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting. Scripta Materialia, 60(7), 563–566. doi:10.1016/j.scriptamat.2008.12.011;camphene;zirconia;cera;oxide;5;;;;50;;?;no;no;0,4;10;;;82;0,18;41,4;;25;;12;2,08333333333333;cylinder;2,82743338823081;;;;0;3000;800;0,05175;;220;7,69824;0,188181818181818 Hong2009;Hong, C., Zhang, X., Han, J., Du, J., & Han, W. (2009). Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting. Scripta Materialia, 60(7), 563–566. doi:10.1016/j.scriptamat.2008.12.011;camphene;zirconia;cera;oxide;5;;;;35;;?;no;no;0,4;15;;;75;0,25;55,4;;25;;12;2,08333333333333;cylinder;2,82743338823081;;;;0;3000;800;0,06925;;220;20,625;0,251818181818182 Hong2009;Hong, C., Zhang, X., Han, J., Du, J., & Han, W. (2009). Ultra-high-porosity zirconia ceramics fabricated by novel room-temperature freeze-casting. Scripta Materialia, 60(7), 563–566. doi:10.1016/j.scriptamat.2008.12.011;camphene;zirconia;cera;oxide;5;;;;20;;?;no;no;0,4;20;;;67;0,33;62,8;;25;;12;2,08333333333333;cylinder;2,82743338823081;;;;0;3000;800;0,0785;;220;47,43684;0,285454545454545 Han2010a;Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2010). Highly porous ZrO2 ceramics fabricated by a camphene-based freeze-casting route: Microstructure and properties. Journal of the European Ceramic Society, 30(1), 53–60. doi:10.1016/j.jeurceramsoc.2009.08.018;camphene;zirconia;cera;oxide;;;;;25;;cellular;no;no;0,4;10;;;81,5;0,185;16,2;;12;;6;2;cylinder;0,339292006587698;0,05;;;0;3000;800;0,02025;;220;8,357745;0,0736363636363636 Han2010a;Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2010). Highly porous ZrO2 ceramics fabricated by a camphene-based freeze-casting route: Microstructure and properties. Journal of the European Ceramic Society, 30(1), 53–60. doi:10.1016/j.jeurceramsoc.2009.08.018;camphene;zirconia;cera;oxide;;;;;25;;cellular;no;no;0,4;15;;;74,4;0,256;32,9;;12;;6;2;cylinder;0,339292006587698;0,05;;;0;3000;800;0,041125;;220;22,14592512;0,149545454545455 Han2010a;Han, J., Hong, C., Zhang, X., Du, J., & Zhang, W. (2010). Highly porous ZrO2 ceramics fabricated by a camphene-based freeze-casting route: Microstructure and properties. Journal of the European Ceramic Society, 30(1), 53–60. doi:10.1016/j.jeurceramsoc.2009.08.018;camphene;zirconia;cera;oxide;;;;;20;;cellular;no;no;0,4;20;;;53,4;0,466;53,4;;12;;6;2;cylinder;0,339292006587698;0,05;;;0;3000;800;0,06675;;220;133,57699872;0,242727272727273 Fukasawa2002;Fukasawa, T., Deng, Z.-Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process. Journal of the American Ceramic Society, 85(9), 2151–2155. doi:10.1111/j.1151-2916.2002.tb00426.x;water;silicon nitride;cera;covalent;;;;;;;;no;;0,5;20;;;69,737;0,30263;;;;;;;;;;;;0;3200;1000;;;290;; Fukasawa2002;Fukasawa, T., Deng, Z.-Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process. Journal of the American Ceramic Society, 85(9), 2151–2155. doi:10.1111/j.1151-2916.2002.tb00426.x;water;silicon nitride;cera;covalent;;;;;;;;no;;0,5;20;;;66,314;0,33686;;;;;;;;;;;;0;3200;1000;;;290;; Fukasawa2002;Fukasawa, T., Deng, Z.-Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process. Journal of the American Ceramic Society, 85(9), 2151–2155. doi:10.1111/j.1151-2916.2002.tb00426.x;water;silicon nitride;cera;covalent;;;;;;;;no;;0,5;25;;;62,080;0,379;;;;;;;;;;;;0;3200;1000;;;290;; Fukasawa2002;Fukasawa, T., Deng, Z.-Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process. Journal of the American Ceramic Society, 85(9), 2151–2155. doi:10.1111/j.1151-2916.2002.tb00426.x;water;silicon nitride;cera;covalent;;;;;;;;no;;0,5;25;;;59,515;0,40485;;;;;;;;;;;;0;3200;1000;;;290;; Fukasawa2002;Fukasawa, T., Deng, Z.-Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process. Journal of the American Ceramic Society, 85(9), 2151–2155. doi:10.1111/j.1151-2916.2002.tb00426.x;water;silicon nitride;cera;covalent;;;;;;;;no;;0,5;30;;;53,500;0,465;;;;;;;;;;;;0;3200;1000;;;290;; Fukasawa2002;Fukasawa, T., Deng, Z.-Y., Ando, M., Ohji, T., & Kanzaki, S. (2002). Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process. Journal of the American Ceramic Society, 85(9), 2151–2155. doi:10.1111/j.1151-2916.2002.tb00426.x;water;silicon nitride;cera;covalent;;;;;;;;no;;0,5;30;;;51,311;0,48689;;;;;;;;;;;;0;3200;1000;;;290;; Fukushima2008;Fukushima, M., Nakata, M., & Yoshizawa, Y. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322–1325. doi:10.2109/jcersj2.116.1322;water;cordierite;cera;oxide;;;;;;;;no;;1,7;5;;;87,615;0,12385;;;;;;;;;;;;0;600;120;;;;; Fukushima2008;Fukushima, M., Nakata, M., & Yoshizawa, Y. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322–1325. doi:10.2109/jcersj2.116.1322;water;cordierite;cera;oxide;;;;;;;;no;;1,7;5;;;84,246;0,15754;;;;;;;;;;;;0;600;120;;;;; Fukushima2008;Fukushima, M., Nakata, M., & Yoshizawa, Y. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322–1325. doi:10.2109/jcersj2.116.1322;water;cordierite;cera;oxide;;;;;;;;no;;1,7;5;;;76,767;0,23233;;;;;;;;;;;;0;600;120;;;;; Fukushima2008;Fukushima, M., Nakata, M., & Yoshizawa, Y. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322–1325. doi:10.2109/jcersj2.116.1322;water;cordierite;cera;oxide;;;;;;;;no;;1,7;10;;;92,920;0,071;;;;;;;;;;;;0;600;120;;;;; Fukushima2008;Fukushima, M., Nakata, M., & Yoshizawa, Y. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322–1325. doi:10.2109/jcersj2.116.1322;water;cordierite;cera;oxide;;;;;;;;no;;1,7;10;;;91,365;0,0863500000000001;;;;;;;;;;;;0;600;120;;;;; Fukushima2008;Fukushima, M., Nakata, M., & Yoshizawa, Y. (2008). Fabrication and properties of ultra highly porous cordierite with oriented micrometer-sized cylindrical pores by gelation and freezing method. Journal of the Ceramic Society of Japan, 116(1360), 1322–1325. doi:10.2109/jcersj2.116.1322;water;cordierite;cera;oxide;;;;;25;;?;no;no;1,7;10;;;86,808;0,13192;4,1;;;;;;;;;;;0;600;120;0,0341666666666667;;;; Fukushima2010;Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation–freezing method. Journal of the European Ceramic Society, 30(14), 2889–2896. doi:10.1016/j.jeurceramsoc.2010.03.018;water;silicon carbide;cera;covalent;;;;;147;;?;no;yes;0,4;10;;;86,8;0,132;5,2;;13;;17;0,764705882352941;cylinder;2,95074089988421;0,5;;;0;3900;450;0,0115555555555556;;410;5,65792128;0,0126829268292683 Fukushima2010;Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation–freezing method. Journal of the European Ceramic Society, 30(14), 2889–2896. doi:10.1016/j.jeurceramsoc.2010.03.018;water;silicon carbide;cera;covalent;-10;;;;34;;?;no;yes;0,4;10;;;86,5;0,135;16,6;;13;;17;0,764705882352941;cylinder;2,95074089988421;0,5;;;0;3900;450;0,0368888888888889;;410;6,0525225;0,0404878048780488 Fukushima2010;Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation–freezing method. Journal of the European Ceramic Society, 30(14), 2889–2896. doi:10.1016/j.jeurceramsoc.2010.03.018;water;silicon carbide;cera;covalent;-70;;;;;;;no;;0,4;10;;;86,566;0,13434;;;;;;;;;;;;0;3900;450;;;410;; Fukushima2010;Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation–freezing method. Journal of the European Ceramic Society, 30(14), 2889–2896. doi:10.1016/j.jeurceramsoc.2010.03.018;water;silicon carbide;cera;covalent;;;;;;;;no;;0,4;10;;;87,323;0,12677;;;;;;;;;;;;0;3900;450;;;410;; Fukushima2010;Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation–freezing method. Journal of the European Ceramic Society, 30(14), 2889–2896. doi:10.1016/j.jeurceramsoc.2010.03.018;water;silicon carbide;cera;covalent;;;;;;;;no;;0,4;10;;;87,620;0,124;;;;;;;;;;;;0;3900;450;;;410;; Fukushima2010;Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation–freezing method. Journal of the European Ceramic Society, 30(14), 2889–2896. doi:10.1016/j.jeurceramsoc.2010.03.018;water;silicon carbide;cera;covalent;;;;;;;;no;;0,4;10;;;86,358;0,13642;;;;;;;;;;;;0;3900;450;;;410;; Fukushima2010;Fukushima, M., Nakata, M., Zhou, Y., Ohji, T., & Yoshizawa, Y. (2010). Fabrication and properties of ultra highly porous silicon carbide by the gelation–freezing method. Journal of the European Ceramic Society, 30(14), 2889–2896. doi:10.1016/j.jeurceramsoc.2010.03.018;water;silicon carbide;cera;covalent;;;;;;;;no;;0,4;10;;;86,067;0,13933;;;;;;;;;;;;0;3900;450;;;410;; Fukasawa2001a;Fukasawa, T., Ando, M., Ohji, T., & Kanzaki, S. (2001). Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-Dry Processing. Journal of the American Ceramic Society, 84(1), 230–232. doi:10.1111/j.1151-2916.2001.tb00638.x;water;alumina;cera;oxide;-50;;;;;;;no;;;33,3;;;53,4;0,466;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001a;Fukasawa, T., Ando, M., Ohji, T., & Kanzaki, S. (2001). Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-Dry Processing. Journal of the American Ceramic Society, 84(1), 230–232. doi:10.1111/j.1151-2916.2001.tb00638.x;water;alumina;cera;oxide;-50;;;;;;;no;;;33,3;;;47,6;0,524;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001a;Fukasawa, T., Ando, M., Ohji, T., & Kanzaki, S. (2001). Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-Dry Processing. Journal of the American Ceramic Society, 84(1), 230–232. doi:10.1111/j.1151-2916.2001.tb00638.x;water;alumina;cera;oxide;-50;;;;;;;no;;;40;;;45,4;0,546;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001a;Fukasawa, T., Ando, M., Ohji, T., & Kanzaki, S. (2001). Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-Dry Processing. Journal of the American Ceramic Society, 84(1), 230–232. doi:10.1111/j.1151-2916.2001.tb00638.x;water;alumina;cera;oxide;-50;;;;;;;no;;;40;;;38,4;0,616;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;28,080;;;63,056;0,36944;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;28,084;;;56,653;0,43347;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;28,167;;;54,285;0,45715;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;33,495;;;55,177;0,44823;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;33,495;;;49,873;0,50127;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;33,495;;;46,481;0,53519;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;40,032;;;46,396;0,53604;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;40,035;;;39,946;0,60054;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;39,951;;;37,147;0,62853;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;44,941;;;38,626;0,61374;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;45,058;;;31,352;0,68648;;;;;;;;;;;;0;2600;400;;;390;; Fukasawa2001;Fukasawa, T., Deng, Z., & Ando, M. (2001). Pore structure of porous ceramics synthesized from water-based slurry by freeze-dry process. Journal of Materials Science, 6, 2523 – 2527. doi:10.1023/A:1017946518955;water;alumina;cera;oxide;;;;;;;;no;;;45,058;;;29,356;0,70644;;;;;;;;;;;;0;2600;400;;;390;; Fu2010;Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380–90. doi:10.1002/jbm.a.32637;water/dioxane;bioglass;glass;oxide;-20;;;;100;;cellular;no;yes;5;9,976;;;69,974;0,30026;10;;;;;;;;;;;0;500;100;0,1;;30;4,87264695436368;0,333333333333333 Fu2010;Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380–90. doi:10.1002/jbm.a.32637;water/dioxane;bioglass;glass;oxide;-20;;;;100;;cellular;no;yes;5;12,529;;;64,906;0,35094;15;;;;;;;;;;;0;500;100;0,15;;30;7,77984814990511;0,5 Fu2010;Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380–90. doi:10.1002/jbm.a.32637;water/dioxane;bioglass;glass;oxide;-20;;;;100;;cellular;no;yes;5;15,034;;;55,100;0,449;25,3;;;;;;;;;;;0;500;100;0,253;;30;16,29339282;0,843333333333333 Fu2010;Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380–90. doi:10.1002/jbm.a.32637;water/dioxane;bioglass;glass;oxide;-20;;;;100;;cellular;no;yes;5;20,029;;;34,994;0,65006;50;;;;;;;;;;;0;500;100;0,5;;30;49,4461902636389;1,66666666666667 Fu2010;Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380–90. doi:10.1002/jbm.a.32637;water;bioglass;glass;oxide;-20;;;;25;;cellular;no;yes;5;10,048;;;74,860;0,251;4,9;;;;;;;;;;;0;500;100;0,049;;30;2,86001509392;0,163333333333333 Fu2010;Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380–90. doi:10.1002/jbm.a.32637;water;bioglass;glass;oxide;-20;;;;25;;cellular;no;yes;5;12,509;;;68,941;0,31059;7,5;;;;;;;;;;;0;500;100;0,075;;30;5,39305576890822;0,25 Fu2010;Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380–90. doi:10.1002/jbm.a.32637;water;bioglass;glass;oxide;-20;;;;25;;cellular;no;yes;5;15,004;;;61,763;0,38237;10;;;;;;;;;;;0;500;100;0,1;;30;10,0629181040495;0,333333333333333 Fu2010;Fu, Q., Rahaman, M. N., Bal, B. S., & Brown, R. F. (2010). Preparation and in vitro evaluation of bioactive glass (13-93) scaffolds with oriented microstructures for repair and regeneration of load-bearing bones. Journal of Biomedical Materials Research Part A, 93(4), 1380–90. doi:10.1002/jbm.a.32637;water;bioglass;glass;oxide;-20;;;;25;;cellular;no;yes;5;19,954;;;39,952;0,60048;21;;;;;;;;;;;0;500;100;0,21;;30;38,9733866695066;0,7 Wildhack2006;Wildhack, S., & Aldinger, F. (2006). Freeze Casting of Aluminium Nitride. Advances in Science and Technology, 45, 407–412. doi:10.4028/www.scientific.net/AST.45.407;water;aluminium nitride;cera;covalent;-40;;;;;;;no;;;47,000;;;49,1;0,509;;;;;;;;;;;;1;2100;250;;;;; Wildhack2006;Wildhack, S., & Aldinger, F. (2006). Freeze Casting of Aluminium Nitride. Advances in Science and Technology, 45, 407–412. doi:10.4028/www.scientific.net/AST.45.407;water;aluminium nitride;cera;covalent;-40;;;;;;;no;;;47,000;;;49,4;0,506;;;;;;;;;;;;1;2100;250;;;;; Wildhack2006;Wildhack, S., & Aldinger, F. (2006). Freeze Casting of Aluminium Nitride. Advances in Science and Technology, 45, 407–412. doi:10.4028/www.scientific.net/AST.45.407;water;aluminium nitride;cera;covalent;-40;;;;;;;no;;;49,013;;;47,3;0,527;;;;;;;;;;;;1;2100;250;;;;; Wildhack2006;Wildhack, S., & Aldinger, F. (2006). Freeze Casting of Aluminium Nitride. Advances in Science and Technology, 45, 407–412. doi:10.4028/www.scientific.net/AST.45.407;water;aluminium nitride;cera;covalent;-40;;;;;;;no;;;49,013;;;47,5;0,525;;;;;;;;;;;;1;2100;250;;;;; Wildhack2006;Wildhack, S., & Aldinger, F. (2006). Freeze Casting of Aluminium Nitride. Advances in Science and Technology, 45, 407–412. doi:10.4028/www.scientific.net/AST.45.407;water;aluminium nitride;cera;covalent;-40;;;;;;;no;;;51,027;;;45,2;0,548;;;;;;;;;;;;1;2100;250;;;;; Wildhack2006;Wildhack, S., & Aldinger, F. (2006). Freeze Casting of Aluminium Nitride. Advances in Science and Technology, 45, 407–412. doi:10.4028/www.scientific.net/AST.45.407;water;aluminium nitride;cera;covalent;-40;;;;;;;no;;;51,027;;;45,2;0,548;;;;;;;;;;;;1;2100;250;;;;; Wildhack2006;Wildhack, S., & Aldinger, F. (2006). Freeze Casting of Aluminium Nitride. Advances in Science and Technology, 45, 407–412. doi:10.4028/www.scientific.net/AST.45.407;water;aluminium nitride;cera;covalent;-40;;;;;;;no;;;53,045;;;43,7;0,563;;;;;;;;;;;;1;2100;250;;;;; Wildhack2006;Wildhack, S., & Aldinger, F. (2006). Freeze Casting of Aluminium Nitride. Advances in Science and Technology, 45, 407–412. doi:10.4028/www.scientific.net/AST.45.407;water;aluminium nitride;cera;covalent;-40;;;;;;;no;;;53;;;43,8;0,562;;;;;;;;;;;;1;2100;250;;;;; Deville2006b;Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515–8. doi:10.1126/science.1120937;water;HAP;cera;oxide;;;;;20;;?;no;no;;;;;47;0,53;143;;;;;;;;;;;0;140;110;1,3;;120;107,19144;1,19166666666667 Deville2006b;Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515–8. doi:10.1126/science.1120937;water;HAP;cera;oxide;;;;;;;?;no;no;;;;;56;0,44;63;;;;;;;;;;;0;140;110;0,572727272727273;;120;61,33248;0,525 Deville2006b;Deville, S., Saiz, E., Nalla, R. K., & Tomsia, A. P. (2006). Freezing as a path to build complex composites. Science, 311(5760), 515–8. doi:10.1126/science.1120937;water;HAP;cera;oxide;;;;;;;?;no;no;;;;;68;0,32;14;;;;;;;;;;;0;140;110;0,127272727272727;;120;23,59296;0,116666666666667 Flauder2014a;Flauder, S., Sajzew, R., & Müller, F. a. (2014). Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation. ACS Applied Materials & Interfaces. doi:10.1021/am507333q;water;HAP;cera;oxide;;20;;15;20;;cellular;no;no;;20;;;68,6;0,314;;3,4;25;6;3;;block;;5;;;0;140;110;;0,0309090909090909;120;; Flauder2014a;Flauder, S., Sajzew, R., & Müller, F. a. (2014). Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation. ACS Applied Materials & Interfaces. doi:10.1021/am507333q;water;HAP;cera;oxide;;20;;15;20;;cellular;no;no;;20;;;66,5;0,335;4,4;;10;;11;;cylinder;;5;;;0;140;110;0,04;;120;27,06867;0,0366666666666667 Flauder2014a;Flauder, S., Sajzew, R., & Müller, F. a. (2014). Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation. ACS Applied Materials & Interfaces. doi:10.1021/am507333q;water;HAP;cera;oxide;;30;;5;15;;cellular;no;no;;10;;;85,6;0,144;0,8;;10;;11;;cylinder;;5;;;0;140;110;0,00727272727272727;;120;2,14990848;0,00666666666666667 Flauder2014a;Flauder, S., Sajzew, R., & Müller, F. a. (2014). Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation. ACS Applied Materials & Interfaces. doi:10.1021/am507333q;water;HAP;cera;oxide;;30;;11;12;;cellular;no;no;;20;;;65,8;0,342;12,5;;10;;11;;cylinder;;5;;;0;140;110;0,113636363636364;;120;28,80121536;0,104166666666667 Flauder2014a;Flauder, S., Sajzew, R., & Müller, F. a. (2014). Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation. ACS Applied Materials & Interfaces. doi:10.1021/am507333q;water;HAP;cera;oxide;;30;;13;8;;cellular;no;no;;30;;;50,1;0,499;34;;10;;11;;cylinder;;5;;;0;140;110;0,309090909090909;;120;89,46107928;0,283333333333333 Sepulveda2014;Sepúlveda, R., Plunk, A. a., & Dunand, D. C. (2014). Microstructure of Fe2O3 scaffolds created by freeze-casting and sintering. Materials Letters, 1–4. doi:10.1016/j.matlet.2014.11.155;camphene;Fe2O3;cera;oxide;30;;;;;;;no;;;5;;21;83,9;0,161;;;;;;;;;;;;;;;;;;; Sepulveda2014;Sepúlveda, R., Plunk, A. a., & Dunand, D. C. (2014). Microstructure of Fe2O3 scaffolds created by freeze-casting and sintering. Materials Letters, 1–4. doi:10.1016/j.matlet.2014.11.155;camphene;Fe2O3;cera;oxide;35;;;;;;;no;;;5;;21;83,3;0,167;;;;;;;;;;;;;;;;;;; Sepulveda2014;Sepúlveda, R., Plunk, A. a., & Dunand, D. C. (2014). Microstructure of Fe2O3 scaffolds created by freeze-casting and sintering. Materials Letters, 1–4. doi:10.1016/j.matlet.2014.11.155;camphene;Fe2O3;cera;oxide;40;;;;;;;no;;;5;;21;82,8;0,172;;;;;;;;;;;;;;;;;;; Sepulveda2014;Sepúlveda, R., Plunk, A. a., & Dunand, D. C. (2014). Microstructure of Fe2O3 scaffolds created by freeze-casting and sintering. Materials Letters, 1–4. doi:10.1016/j.matlet.2014.11.155;camphene;Fe2O3;cera;oxide;42,5;;;;;;;no;;;5;;21;82,7;0,173;;;;;;;;;;;;;;;;;;; Liu2015;Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. (2015). Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268–274. doi:10.1016/j.solmat.2014.12.012;TBA;mullite;cera;oxide;;;;;;;;no;;14,7;15;;;70;0,3;;;;;;;;;;;;;;;;;;; Liu2015;Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. (2015). Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268–274. doi:10.1016/j.solmat.2014.12.012;TBA;mullite;cera;oxide;;;;;;;;no;;14,7;20;;;63,3;0,367;;;;;;;;;;;;;;;;;;; Liu2015;Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. (2015). Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268–274. doi:10.1016/j.solmat.2014.12.012;TBA;mullite;cera;oxide;;;;;;;;no;;14,7;25;;;59;0,41;;;;;;;;;;;;;;;;;;; Liu2015;Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. (2015). Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268–274. doi:10.1016/j.solmat.2014.12.012;TBA;mullite;cera;oxide;;;;;;;;no;;14,7;30;;;55,4;0,446;;;;;;;;;;;;;;;;;;; Liu2015;Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. (2015). Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268–274. doi:10.1016/j.solmat.2014.12.012;TBA;mullite;cera;oxide;;;;;;;;no;;14,7;35;;;54,5;0,455;;;;;;;;;;;;;;;;;;; Liu2015;Liu, R., Zhang, F., Su, W., Zhao, H., & Wang, C. (2015). Impregnation of porous mullite with Na2SO4 phase change material for thermal energy storage. Solar Energy Materials and Solar Cells, 134, 268–274. doi:10.1016/j.solmat.2014.12.012;TBA;mullite;cera;oxide;;;;;;;;no;;14,7;40;;;53,5;0,465;;;;;;;;;;;;;;;;;;; Fukasawa2002a;Fukasawa, T., Ando, M., & Ohji, T. (2002). Filtering properties of porous ceramics with unidirectionally aligne pores. Journal Of The Ceramic Society Of Japan, 110(1283), 627–631. doi:10.2109/jcersj.110.627;water;silicon nitride;cera;covalent;-80;;;;;;;?;;;20;;;66,5;0,335;;;;;;;;;;;;;;;;;;; Fukasawa2002a;Fukasawa, T., Ando, M., & Ohji, T. (2002). Filtering properties of porous ceramics with unidirectionally aligne pores. Journal Of The Ceramic Society Of Japan, 110(1283), 627–631. doi:10.2109/jcersj.110.627;water;silicon nitride;cera;covalent;-80;;;;;;;?;;;20;;;62,8;0,372;;;;;;;;;;;;;;;;;;; Fukasawa2002a;Fukasawa, T., Ando, M., & Ohji, T. (2002). Filtering properties of porous ceramics with unidirectionally aligne pores. Journal Of The Ceramic Society Of Japan, 110(1283), 627–631. doi:10.2109/jcersj.110.627;water;silicon nitride;cera;covalent;-25;;;;;;;?;;;20;;;66,2;0,338;;;;;;;;;;;;;;;;;;; Fukasawa2002a;Fukasawa, T., Ando, M., & Ohji, T. (2002). Filtering properties of porous ceramics with unidirectionally aligne pores. Journal Of The Ceramic Society Of Japan, 110(1283), 627–631. doi:10.2109/jcersj.110.627;water;silicon nitride;cera;covalent;-80;;;;;;;?;;;20;;;69,5;0,305;;;;;;;;;;;;;;;;;;; Fukushima2014a;Fukushima, M., & Yoshizawa, Y. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation-freezing route. Journal of the American Ceramic Society, 93(3), 713–717. doi:10.1111/jace.12723;water;silica;cera;oxide;-80;;;;;;;;;0,02;10;;;88;0,12;;;;;;;;;;;;;;;;;;; Fukushima2014a;Fukushima, M., & Yoshizawa, Y. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation-freezing route. Journal of the American Ceramic Society, 93(3), 713–717. doi:10.1111/jace.12723;water;silica;cera;oxide;-80;;;;;;;;;0,02;5;;;94;0,06;;;;;;;;;;;;;;;;;;; Fukushima2014a;Fukushima, M., & Yoshizawa, Y. (2014). Fabrication of highly porous silica thermal insulators prepared by gelation-freezing route. Journal of the American Ceramic Society, 93(3), 713–717. doi:10.1111/jace.12723;water;silica;cera;oxide;-80;;;;;;;;;0,02;1;;;98;0,02;;;;;;;;;;;;;;;;;;; Pekor2010;Pekor, C. M., Groth, B., & Nettleship, I. (2010). The Effect of Polyvinyl Alcohol on the Microstructure and Permeability of Freeze-Cast Alumina. Journal of the American Ceramic Society, 93(1), 115–120. doi:10.1111/j.1551-2916.2009.03398.x;water;alumina;cera;oxide;-70;;;;;;;;;0,4;25;;;75;0,25;;;;;;;;;;;;;;;;;;; Zuo2010;Zuo, K., Zeng, Y.-P., & Jiang, D. (2010). Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Materials Science and Engineering: C, 30(2), 283–287. doi:10.1016/j.msec.2009.11.003;water;HAP;cera;oxide;-18;;;;;;;;;0,4;42,5;;;20,4;0,796;;;;;;;;;;;;;;;;;;; Zuo2010;Zuo, K., Zeng, Y.-P., & Jiang, D. (2010). Effect of polyvinyl alcohol additive on the pore structure and morphology of the freeze-cast hydroxyapatite ceramics. Materials Science and Engineering: C, 30(2), 283–287. doi:10.1016/j.msec.2009.11.003;water;HAP;cera;oxide;-18;;;;;;;;;0,4;24;;;23,6;0,764;;;;;;;;;;;;;;;;;;; Yoon2008;Yoon, B.-H. (2008). In-situ fabrication of porous hydroxyapatite (HA) scaffolds with dense shells by freezing HA/camphene slurry. Materials Letters, 62(10-11), 1700–1703. doi:10.1016/j.matlet.2007.09.063;camphene;HAP;cera;oxide;35;;;;;;;;;;20;;;;;16,1;;;;;;;;;;;;;;;;;; Zeng2014b;Zeng, J., Zhang, Y., Zhou, K., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718–722. doi:10.1016/S1003-6326(14)63116-2;water;alumina;cera;oxide;;;;;;;;no;;0,5;10;;;74,4;0,256;13,4;;10;15;;;;;0,2;;;;2600;400;0,0335;;390;39,25868544;0,0343589743589744 Zeng2014b;Zeng, J., Zhang, Y., Zhou, K., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718–722. doi:10.1016/S1003-6326(14)63116-2;water/10%ethanol;alumina;cera;oxide;;;;;;;;no;;0,5;10;;;73,1;0,269;14,5;;10;15;;;;;0,2;;;;2600;400;0,03625;;390;45,54835506;0,0371794871794872 Zeng2014b;Zeng, J., Zhang, Y., Zhou, K., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718–722. doi:10.1016/S1003-6326(14)63116-2;water/30%ethanol;alumina;cera;oxide;;;;;;;;no;;0,5;10;;;68,5;0,315;18,2;;10;15;;;;;0,2;;;;2600;400;0,0455;;390;73,1387475;0,0466666666666667 Zeng2014b;Zeng, J., Zhang, Y., Zhou, K., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718–722. doi:10.1016/S1003-6326(14)63116-2;water/10%1-propanol;alumina;cera;oxide;;;;;;;;no;;0,5;10;;;74,3;0,257;16,6;;10;15;;;;;0,2;;;;2600;400;0,0415;;390;39,72054762;0,0425641025641026 Zeng2014b;Zeng, J., Zhang, Y., Zhou, K., & Zhang, D. (2014). Effects of alcohol additives on pore structure and morphology of freeze-cast ceramics. Transactions of Nonferrous Metals Society of China, 24(3), 718–722. doi:10.1016/S1003-6326(14)63116-2;water/30%1-propanol;alumina;cera;oxide;;;;;;;;no;;0,5;10;;;73,7;0,263;15;;10;15;;;;;0,2;;;;2600;400;0,0375;;390;42,56798598;0,0384615384615385 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (10/90);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;54,414;0,45586;47;;15;25;;;;;0,5;;;;2960;760;0,0618421052631579;;237;134,70820677926;0,19831223628692 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (30/70);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;60,213;0,39787;60;;15;25;;;;;0,5;;;;2880;680;0,0882352941176471;;271;102,410414286271;0,22140221402214 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (50/50);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;63,011;0,36989;28;;15;25;;;;;0,5;;;;2800;600;0,0466666666666667;;305;92,6123406662943;0,0918032786885246 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (70/30);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;59,424;0,40576;14;;15;25;;;;;0,5;;;;2720;520;0,0269230769230769;;339;135,880971789533;0,0412979351032448 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (90/10);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;52,413;0,47587;36;;15;25;;;;;0,5;;;;2640;440;0,0818181818181818;;373;241,170987828865;0,096514745308311 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (10/90);cera;oxide;-20;;;;;;brittle;yes;;;30;;3wt%TiO2;53,284;0,46716;78;;15;25;;;;;0,5;;;;2960;760;0,102631578947368;;237;144,976144420548;0,329113924050633 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (30/70);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;55,570;0,444;105;;15;25;;;;;0,5;;;;2880;680;0,154411764705882;;271;142,609836175182;0,387453874538745 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (50/50);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;57,359;0,42641;61;;15;25;;;;;0,5;;;;2800;600;0,101666666666667;;305;141,883937676719;0,2 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (70/30);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;52,534;0,47466;41;;15;25;;;;;0,5;;;;2720;520;0,0788461538461538;;339;217,519829055876;0,12094395280236 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (90/10);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;49,278;0,50722;66;;15;25;;;;;0,5;;;;2640;440;0,15;;373;292,044607348253;0,176943699731903 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (10/90);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;45,661;0,54339;80;;15;25;;;;;0,5;;;;2960;760;0,105263157894737;;237;228,157380443831;0,337552742616034 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (30/70);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;49,728;0,50272;91;;15;25;;;;;0,5;;;;2880;680;0,133823529411765;;271;206,585117418652;0,335793357933579 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (50/50);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;51,781;0,48219;86;;15;25;;;;;0,5;;;;2800;600;0,143333333333333;;305;205,16614014405;0,281967213114754 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (70/30);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;48,412;0,51588;48;;15;25;;;;;0,5;;;;2720;520;0,0923076923076923;;339;279,252469307346;0,141592920353982 Ping2015;Ping, R. G., Chang, S., & Fu, S. Y. (2015). Effects of composition and sintering temperature on the structure and compressive property of the lamellar Al2 O3 – ZrO2 scaffolds prepared by freeze casting. Journal of Materials Science, (5988). doi:10.1007/s10853-015-9053-6;water;alumina/zirconia (90/10);cera;oxide;-20;;;;;;cellular;;;;30;;3wt%TiO2;40,036;0,59964;48;;15;25;;;;;0,5;;;;2640;440;0,109090909090909;;373;482,538387576224;0,128686327077748 Li2015b;Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & Mckittrick, J. (2015). Sintering of Bi-porous titanium dioxide scaffolds: Experimentation, modeling and simulation. Materials Science & Engineering A. doi:10.1016/j.msea.2015.03.065;;titania;cera;oxide;;10;;;;;;;;0,35;10;;;87;0,13;1,88;;5;5;5;;;;0,005;;;0;700;400;0,0047;;220;2,90004;0,00854545454545455 Li2015b;Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & Mckittrick, J. (2015). Sintering of Bi-porous titanium dioxide scaffolds: Experimentation, modeling and simulation. Materials Science & Engineering A. doi:10.1016/j.msea.2015.03.065;;titania;cera;oxide;;10;;;;;;;;0,35;10;;;85;0,15;1,13;;5;5;5;;;;0,005;;;0;700;400;0,002825;;220;4,455;0,00513636363636364 Li2015b;Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & Mckittrick, J. (2015). Sintering of Bi-porous titanium dioxide scaffolds: Experimentation, modeling and simulation. Materials Science & Engineering A. doi:10.1016/j.msea.2015.03.065;;titania;cera;oxide;;10;;;;;;;;0,35;10;;;75;0,25;3,88;;5;5;5;;;;0,005;;;0;700;400;0,0097;;220;20,625;0,0176363636363636 Li2015b;Li, W., Porter, M. M., Olevsky, E. A., German, R. M., & Mckittrick, J. (2015). Sintering of Bi-porous titanium dioxide scaffolds: Experimentation, modeling and simulation. Materials Science & Engineering A. doi:10.1016/j.msea.2015.03.065;;titania;cera;oxide;;10;;;;;;;;0,35;10;;;28;0,72;514;;5;5;5;;;;0,005;;;0;700;400;1,285;;220;492,68736;2,33636363636364 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;