Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download
94 views
cf = ModularForms(Gamma0(50),2).cuspidal_subspace() f = cf.newforms()[0] MS = ModularSymbols(GammaH(50,[crt(1+5, 1, 25, 2)])) sigmaf = (MS.T(7) - f.coefficient(7)).kernel().sign_submodule(1).basis()[0] sigmaf_c = MS.coordinate_vector(sigmaf) mat = MS._action_on_modular_symbols([5,1,0,5]) MS_c = MS.free_module() translates = mat.maxspin(sigmaf_c) typespace = MS_c.submodule(translates) print "\n" tt = mat.restrict(typespace) ch = matrix([[1,1,1,1],[2,-3,2,2], [-2,3,-2,3], [-1,-1,4,-1]]) ch * tt* ~ch
[ 0 0 0 -1] [ 1 0 0 -1] [ 0 1 0 -1] [ 0 0 1 -1]
Slift = [25, 24, 26, 25] bSbi = [5*25, 24, 25 * 26, 5 * 25] ss = MS._action_on_modular_symbols(bSbi).restrict(typespace).transpose() 5* ch * ss * ~ch
[-4 3 0 -3] [-3 6 0 -1] [-2 4 -5 1] [-6 2 0 3]
Rlift = [25, 51, 24, 49] bRbi = [5 * 25, 51, 25 * 24, 5 * 49] rr = MS._action_on_modular_symbols(bRbi).restrict(typespace).transpose() 5 * ch * rr * ~ch
[ 3 0 -3 4] [ 6 0 -1 -2] [ 4 -5 1 2] [ 2 0 3 1]
ss * tt
[ 1 -2 2 -1] [ 0 -1 2 -1] [ 0 0 1 0] [ 0 1 0 0]
T = matrix([[1,1],[0,1]]) S = matrix([[0,1],[-1,0]]) tor2 = matrix([[2,0],[0,1]]) tor2i = matrix([[3,0],[0,1]]) tor2 * S * tor2i
[ 0 2] [-3 0]
c = matrix([[10,7],[7,5]]) -T*S*~T^3*S*~T^2*S*~T^2*S
[10 7] [ 7 5]
ss_conj = tt* ss * ~tt^3 * ss * ~tt^2 * ss * ~tt^2 * ss ss_conj print "\n" ss print "\n" tt_conj = tt^2 tt_conj print "\n" tt
[-1 2 -1 0] [ 0 1 0 0] [ 0 0 1 0] [ 0 -1 2 -1] [ 0 1 -2 1] [ 0 0 -1 0] [ 0 -1 0 0] [ 1 -2 1 0] [-1 0 1 -1] [ 0 -1 2 -1] [ 1 -2 2 -1] [ 1 -1 1 -1] [ 0 0 0 -1] [ 0 0 -1 0] [ 0 1 -2 1] [ 1 0 -1 1]
MatSp = ss.parent() rows = [] for m in MatSp.basis(): to_add_1 = (ss_conj * m - m * ss).list() to_add_2 = (tt_conj * m - m * tt).list() to_add = to_add_1 + to_add_2 rows.append(to_add) themat = matrix(rows) poss_tor = themat.left_kernel() tor2 = MatSp(poss_tor.gens()[0].list()) ch*tor2*~ch
[ 0 1 0 -1] [ 0 0 0 -1] [ 0 0 1 -1] [ 1 0 0 -1]
matrix([[0,2],[1,0]])
[0 2] [1 0]
from sage.modular.local_comp.liftings import * lift_matrix_to_sl2z([4,8,1,1],5)
[4, 3, 1, 1]
~tor2 * ss
[-1 0 0 0] [-1 0 1 -1] [-1 1 0 -1] [ 0 0 0 -1]
G = GL(2,5) sG = G([0,-1,1,0]) sT = G([1,1,0,1]) sgam2 = G([2,0,0,1]) a = G([3,-2,-1,3]) a.word_problem([sG,sT,sgam2])
([2 0] [0 1]) * ([1 1] [0 1]) * ([0 4] [1 0])^-1 * ([1 1] [0 1])^2
f25gen = tor2 * tt * ~ss * tt^2 for i in range(25): print (f25gen^i).trace()
4 1 1 -2 1 1 4 1 1 -2 1 1 4 1 1 -2 1 1 4 1 1 -2 1 1 4
(~tt)^-2 * ~ss * ~tt * ~tor2
[ 1 -2 1 0] [ 0 -1 0 0] [ 0 0 -1 0] [ 0 0 0 -1]
KK.<cc> = GF(25, 'cc') KK sqrt2 = 4*cc - 2
Finite Field in cc of size 5^2
cc.multiplicative_order()
24
3 - sqrt2
cc
cc^3
4*cc + 3