Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Environment to perform calculations of equivariant vector bundles on homogeneous varieties

1842 views
License: GPL3
ubuntu2204
Kernel: SageMath 10.3
%run '../Initialize.ipynb' from Equivariant_Vector_Bundles_On_Homogeneous_Varieties.Base_Space.Orthogonal_Grassmannian import Orthogonal_Grassmannian
k = 3 n = 5 N = 2*n+1 X = Orthogonal_Grassmannian(k,N) G = X.Parent_Group() fw = X.Basis('fw') Output = dict({}) Output.update({ 1 : '' }) Output[1] += 'X: '+str(X)+'\n' Output[1] += '(n='+str(n)+')'+'\n' d = X.Dimension() Output[1] += 3*' '+'Dimension: '+str(d)+'\n' lMax = X.K0().rank() Output[1] += 3*' '+'Rank of K0(X) (max. collection length): '+str(lMax)+'\n' wMax = X.Fano_Index() Output[1] += 3*' '+'Fano index (max. orbit length): '+str(wMax)+'\n' Output[1] += '\n' Output.update({ 2 : '' }) Output[2] += 3*' '+'Consecutive Lefschetz collection.'+'\n' LC1 = X.My_Collection( Modus='Con' ) l1 = len(LC1) Output[2] += 3*' '+'Starting block:'+'\n' w1_0 = len( LC1.Starting_Block() ) s = ceil( math.log10( w1_0 ) ) for i , cE in enumerate ( LC1.Starting_Block() , start=1 ) : Output[2] += 6*' '+(s-floor(math.log10(i))-1)*' '+str(i)+' '+str(cE)+'\n' Output[2] += '\n' Output.update({ 3 : '' }) Output[3] += 3*' '+'Alternating Lefschetz collection.'+'\n' LC2 = X.My_Collection( Modus='Alt' ) l2 = len(LC2) Output[3] += 3*' '+'Starting block:'+'\n' w2_0 = len( LC2.Starting_Block() ) s = ceil( math.log10( w2_0 ) ) for i , cE in enumerate ( LC2.Starting_Block() , start=1 ) : Output[3] += 6*' '+(s-floor(math.log10(i))-1)*' '+str(i)+' '+str(cE)+'\n' Output[3] += '\n' for Key , Line in Output.items() : print( Line )
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 11-dimensional ambient vector space. (n=5) Dimension: 18 Rank of K0(X) (max. collection length): 80 Fano index (max. orbit length): 7 Consecutive Lefschetz collection. Starting block: 1 VB(0) 2 VB(Lambda[1]) 3 VB(Lambda[2]) 4 VB(2*Lambda[1]) 5 VB(Lambda[1] + Lambda[2]) 6 VB(2*Lambda[2]) 7 VB(2*Lambda[1] + Lambda[2]) 8 VB(Lambda[5]) 9 Equivariant extension of VB(Lambda[1] + Lambda[5]) by VB(Lambda[5]) 10 Equivariant extension of VB(2*Lambda[1] + Lambda[5]) by VB(Lambda[1] + Lambda[5]) 11 Equivariant extension of VB(3*Lambda[1] + Lambda[5]) by VB(2*Lambda[1] + Lambda[5]) Alternating Lefschetz collection. Starting block: 1 VB(0) 2 VB(Lambda[5]) 3 VB(Lambda[1]) 4 VB(Lambda[2]) 5 Equivariant extension of VB(Lambda[1] + Lambda[5]) by VB(Lambda[5]) 6 VB(2*Lambda[1]) 7 VB(Lambda[1] + Lambda[2]) 8 VB(2*Lambda[2]) 9 Equivariant extension of VB(2*Lambda[1] + Lambda[5]) by VB(Lambda[1] + Lambda[5]) 10 VB(2*Lambda[1] + Lambda[2]) 11 Equivariant extension of VB(3*Lambda[1] + Lambda[5]) by VB(2*Lambda[1] + Lambda[5])
E = X.calU( 0*fw[n] ) * G.rmV( fw[n] ) for Smd in E.Irreducible_Components() : print( Smd ) print() print( G.rmV( fw[n] ).exterior_power(2) )
VB(Lambda[2] - Lambda[3] + Lambda[5]) VB(Lambda[1] - Lambda[3] + Lambda[5]) VB(Lambda[5]) VB(-Lambda[3] + Lambda[5]) B5(0,0,0,0,0) + B5(0,0,1,0,0) + B5(0,0,0,1,0)
print( X.calS().Wedge(2) )
VB(Lambda[4]) + VB(Lambda[3])
cUˇ
print( '' )
cUˇ
cR = X.calU( fw[4] )(-1) for i in [ 0 .. cR.Rank() ] : print( i , cR.Wedge(i) )
0 VB(0) 1 VB(-Lambda[3] + Lambda[4]) 2 VB(-Lambda[3] + 2*Lambda[5]) 3 VB(-Lambda[3] + 2*Lambda[5]) 4 VB(-Lambda[3] + Lambda[4]) 5 VB(0)