Environment to perform calculations of equivariant vector bundles on homogeneous varieties
Equivariant_Vector_Bundles_On_Homogeneous_Varieties__0-2 / tests / fullness_for_OG-3-11 / Filtration.ipynb
1842 viewsLicense: GPL3
ubuntu2204
Kernel: SageMath 10.3
In [3]:
In [4]:
Out[4]:
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 11-dimensional ambient vector space.
(n=5)
Dimension: 18
Rank of K0(X) (max. collection length): 80
Fano index (max. orbit length): 7
Consecutive Lefschetz collection.
Starting block:
1 VB(0)
2 VB(Lambda[1])
3 VB(Lambda[2])
4 VB(2*Lambda[1])
5 VB(Lambda[1] + Lambda[2])
6 VB(2*Lambda[2])
7 VB(2*Lambda[1] + Lambda[2])
8 VB(Lambda[5])
9 Equivariant extension of VB(Lambda[1] + Lambda[5]) by VB(Lambda[5])
10 Equivariant extension of VB(2*Lambda[1] + Lambda[5]) by VB(Lambda[1] + Lambda[5])
11 Equivariant extension of VB(3*Lambda[1] + Lambda[5]) by VB(2*Lambda[1] + Lambda[5])
Alternating Lefschetz collection.
Starting block:
1 VB(0)
2 VB(Lambda[5])
3 VB(Lambda[1])
4 VB(Lambda[2])
5 Equivariant extension of VB(Lambda[1] + Lambda[5]) by VB(Lambda[5])
6 VB(2*Lambda[1])
7 VB(Lambda[1] + Lambda[2])
8 VB(2*Lambda[2])
9 Equivariant extension of VB(2*Lambda[1] + Lambda[5]) by VB(Lambda[1] + Lambda[5])
10 VB(2*Lambda[1] + Lambda[2])
11 Equivariant extension of VB(3*Lambda[1] + Lambda[5]) by VB(2*Lambda[1] + Lambda[5])
In [8]:
Out[8]:
VB(Lambda[2] - Lambda[3] + Lambda[5])
VB(Lambda[1] - Lambda[3] + Lambda[5])
VB(Lambda[5])
VB(-Lambda[3] + Lambda[5])
B5(0,0,0,0,0) + B5(0,0,1,0,0) + B5(0,0,0,1,0)
In [9]:
Out[9]:
VB(Lambda[4]) + VB(Lambda[3])
In [71]:
Out[71]:
cUˇ
In [40]:
Out[40]:
cUˇ
In [7]:
Out[7]:
0 VB(0)
1 VB(-Lambda[3] + Lambda[4])
2 VB(-Lambda[3] + 2*Lambda[5])
3 VB(-Lambda[3] + 2*Lambda[5])
4 VB(-Lambda[3] + Lambda[4])
5 VB(0)
In [38]:
In [0]:
In [0]:
In [0]:
In [0]: