Environment to perform calculations of equivariant vector bundles on homogeneous varieties
License: GPL3
ubuntu2204
Kernel: SageMath 10.3
In [1]:
In [53]:
Out[53]:
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 9-dimensional ambient vector space.
(n=4)
Dimension: 12
Rank of K0(X) (max. collection length): 32
Fano index (max. orbit length): 5
cM1 is exceptional.
Can candidate be embedded in the Lefschetz collection LC1?
Not after row 0.
Not after row 1.
Not after row 2.
Not after row 3.
Yes after row 4 to the columns [0, 1, 2, 3, 4].
Yes after row 5 to the columns [0, 1, 2, 3, 4].
Yes after row 6 to the columns [0, 1, 2, 3, 4].
Can candidate be embedded in the Lefschetz collection LC2?
Not after row 0.
Not after row 1.
Not after row 2.
Not after row 3.
Yes after row 4 to the columns [0, 1, 2, 3, 4].
Yes after row 5 to the columns [0, 1, 2, 3, 4].
Yes after row 6 to the columns [0, 1, 2, 3, 4].
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 11-dimensional ambient vector space.
(n=5)
Dimension: 18
Rank of K0(X) (max. collection length): 80
Fano index (max. orbit length): 7
cM1 is exceptional.
Can candidate be embedded in the Lefschetz collection LC1?
Not after row 0.
Not after row 1.
Not after row 2.
Not after row 3.
Not after row 4.
Not after row 5.
Not after row 6.
Not after row 7.
Yes after row 8 to the columns [0, 1, 2, 3, 4, 5, 6].
Yes after row 9 to the columns [0, 1, 2, 3, 4, 5, 6].
Yes after row 10 to the columns [0, 1, 2, 3, 4, 5, 6].
Yes after row 11 to the columns [0, 1, 2, 3, 4, 5, 6].
Can candidate be embedded in the Lefschetz collection LC2?
Not after row 0.
Not after row 1.
Not after row 2.
Not after row 3.
Not after row 4.
Not after row 5.
Not after row 6.
Not after row 7.
Not after row 8.
Not after row 9.
Yes after row 10 to the columns [0, 1, 2, 3, 4, 5, 6].
Yes after row 11 to the columns [0, 1, 2, 3, 4, 5, 6].
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 13-dimensional ambient vector space.
(n=6)
Dimension: 24
Rank of K0(X) (max. collection length): 160
Fano index (max. orbit length): 9
cM1 is exceptional.
Can candidate be embedded in the Lefschetz collection LC1?
Not after row 0.
Not after row 1.
Not after row 2.
Not after row 3.
Not after row 4.
Not after row 5.
Not after row 6.
Not after row 7.
Not after row 8.
Not after row 9.
In [2]:
Out[2]:
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 9-dimensional ambient vector space.
(n=4)
Dimension: 12
Rank of K0(X) (max. collection length): 32
Fano index (max. orbit length): 5
VB(Lambda[2] + 2*Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1]) + VB(2*Lambda[4]) + VB(0)(1)
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 11-dimensional ambient vector space.
(n=5)
Dimension: 18
Rank of K0(X) (max. collection length): 80
Fano index (max. orbit length): 7
VB(Lambda[2] + 2*Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(0)
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 13-dimensional ambient vector space.
(n=6)
Dimension: 24
Rank of K0(X) (max. collection length): 160
Fano index (max. orbit length): 9
VB(Lambda[2] + 2*Lambda[6])(-1) + VB(Lambda[2] + Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[5])(-1) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[6]) + VB(Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(Lambda[4])(-1) + VB(0)
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 15-dimensional ambient vector space.
(n=7)
Dimension: 30
Rank of K0(X) (max. collection length): 280
Fano index (max. orbit length): 11
VB(Lambda[2] + 2*Lambda[7])(-1) + VB(Lambda[2] + Lambda[6])(-1) + VB(Lambda[2] + Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[6])(-1) + VB(Lambda[1] + Lambda[5])(-1) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[7]) + VB(Lambda[6]) + VB(Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(Lambda[5])(-1) + VB(Lambda[4])(-1) + VB(0)
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 17-dimensional ambient vector space.
(n=8)
Dimension: 36
Rank of K0(X) (max. collection length): 448
Fano index (max. orbit length): 13
VB(Lambda[2] + 2*Lambda[8])(-1) + VB(Lambda[2] + Lambda[7])(-1) + VB(Lambda[2] + Lambda[6])(-1) + VB(Lambda[2] + Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[7])(-1) + VB(Lambda[1] + Lambda[6])(-1) + VB(Lambda[1] + Lambda[5])(-1) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[8]) + VB(Lambda[7]) + VB(Lambda[6]) + VB(Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(Lambda[6])(-1) + VB(Lambda[5])(-1) + VB(Lambda[4])(-1) + VB(0)
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 19-dimensional ambient vector space.
(n=9)
Dimension: 42
Rank of K0(X) (max. collection length): 672
Fano index (max. orbit length): 15
VB(Lambda[2] + 2*Lambda[9])(-1) + VB(Lambda[2] + Lambda[8])(-1) + VB(Lambda[2] + Lambda[7])(-1) + VB(Lambda[2] + Lambda[6])(-1) + VB(Lambda[2] + Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[8])(-1) + VB(Lambda[1] + Lambda[7])(-1) + VB(Lambda[1] + Lambda[6])(-1) + VB(Lambda[1] + Lambda[5])(-1) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[9]) + VB(Lambda[8]) + VB(Lambda[7]) + VB(Lambda[6]) + VB(Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(Lambda[7])(-1) + VB(Lambda[6])(-1) + VB(Lambda[5])(-1) + VB(Lambda[4])(-1) + VB(0)
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 21-dimensional ambient vector space.
(n=10)
Dimension: 48
Rank of K0(X) (max. collection length): 960
Fano index (max. orbit length): 17
VB(Lambda[2] + 2*Lambda[10])(-1) + VB(Lambda[2] + Lambda[9])(-1) + VB(Lambda[2] + Lambda[8])(-1) + VB(Lambda[2] + Lambda[7])(-1) + VB(Lambda[2] + Lambda[6])(-1) + VB(Lambda[2] + Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[9])(-1) + VB(Lambda[1] + Lambda[8])(-1) + VB(Lambda[1] + Lambda[7])(-1) + VB(Lambda[1] + Lambda[6])(-1) + VB(Lambda[1] + Lambda[5])(-1) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[10]) + VB(Lambda[9]) + VB(Lambda[8]) + VB(Lambda[7]) + VB(Lambda[6]) + VB(Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(Lambda[8])(-1) + VB(Lambda[7])(-1) + VB(Lambda[6])(-1) + VB(Lambda[5])(-1) + VB(Lambda[4])(-1) + VB(0)
In [0]: