Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Environment to perform calculations of equivariant vector bundles on homogeneous varieties

1842 views
License: GPL3
ubuntu2204
Kernel: SageMath 10.3
%run '../Initialize.ipynb' from Equivariant_Vector_Bundles_On_Homogeneous_Varieties.Base_Space.Orthogonal_Grassmannian import Orthogonal_Grassmannian
k = 3 for n in [ 4 .. 10 ] : N = 2*n+1 X = Orthogonal_Grassmannian(k,N) G = X.Parent_Group() fw = X.Basis('fw') print( 'X: '+str(X) ) print( 3*' ' , '(n='+str(n)+')' ) d = X.Dimension() print( 3*' ' , 'Dimension: '+str(d) ) lMax = X.K0().rank() print( 3*' ' , 'Rank of K0(X) (max. collection length): '+str(lMax) ) wMax = X.Fano_Index() print( 3*' ' , 'Fano index (max. orbit length): '+str(wMax) ) print() if n == 4 : cR = X.calU( 2*fw[4] )(-1) else : cR = X.calU( fw[4] )(-1) cM2 = X.calU().Dual()*cR.Wedge(n-3) + cR.Wedge(n-3) + cR.Wedge(n-4) cM1 = cM2*-1 for Smd in ( X.calS()*G.rmV( fw[n] ) ).Irreducible_Components() : cM1 += Smd #cQ = dict({}) #for p in [ 0 .. n-1 ] : # Stock = { -p-1+i : X.calU().Symmetric_Power(p-i) * G.rmV( fw[1] ).exterior_power(i) # for i in [ 0 .. p ] # } # Stock.update({ 0 : 'Cokernel' }) # cQ.update({ p : X.Complex(Stock).SemiSimplification(0) }) # #cM2 = X.Zero_Vector_Bundle() #for q in [ 0 .. floor((n-1)/2) ] : # cM2 += cQ[2*q] #print( 3*' ' , 'cM2 has semi-simplification:' ) #for Smd in cM2 : # print( 6*' ' , bcolors.OKBLUE+str(Smd)+bcolors.ENDC ) #print() # #cM1 = cM2*-1 #for Smd in ( X.calS()*G.rmV( fw[n] ) ).Irreducible_Components() : # cM1 += Smd #print( 3*' ' , 'cM1 has semi-simplification:' ) #for Smd in cM1 : # print( 6*' ' , bcolors.OKBLUE+str(Smd)+bcolors.ENDC ) #print() Is_cM1_exceptional = cM1.Is_Exceptional( Test_Numerically=True ) if Is_cM1_exceptional : print( 3*' ' , 'cM1 is '+bcolors.OKGREEN+'exceptional'+bcolors.ENDC+'.' ) print() for i , LC in enumerate([ X.My_Collection( Modus='Con' ) , X.My_Collection( Modus='Alt' ) ] , start=1 ) : print( 3*' ' , 'Can candidate be embedded in the Lefschetz collection LC'+str(i)+'?' ) for xPos , Admissible_Columns in LC.Test_For_Extension ( New_Object=cM1 , Test_Numerically=True , Test_If_Self_Is_Exceptional=False ) : if 0 < len(Admissible_Columns) : print( 6*' ' , bcolors.OKGREEN+'Yes'+bcolors.ENDC+' after row '+str(xPos)+' to the columns '+bcolors.OKBLUE+str(Admissible_Columns)+bcolors.ENDC+'.' ) else : print( 6*' ' , bcolors.FAIL+'Not'+bcolors.ENDC+' after row '+str(xPos)+'.' ) print() else : print( 3*' ' , 'cM1 is '+bcolors.FAIL+'not exceptional'+bcolors.ENDC+'.' ) print()
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 9-dimensional ambient vector space. (n=4) Dimension: 12 Rank of K0(X) (max. collection length): 32 Fano index (max. orbit length): 5 cM1 is exceptional. Can candidate be embedded in the Lefschetz collection LC1? Not after row 0. Not after row 1. Not after row 2. Not after row 3. Yes after row 4 to the columns [0, 1, 2, 3, 4]. Yes after row 5 to the columns [0, 1, 2, 3, 4]. Yes after row 6 to the columns [0, 1, 2, 3, 4]. Can candidate be embedded in the Lefschetz collection LC2? Not after row 0. Not after row 1. Not after row 2. Not after row 3. Yes after row 4 to the columns [0, 1, 2, 3, 4]. Yes after row 5 to the columns [0, 1, 2, 3, 4]. Yes after row 6 to the columns [0, 1, 2, 3, 4]. X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 11-dimensional ambient vector space. (n=5) Dimension: 18 Rank of K0(X) (max. collection length): 80 Fano index (max. orbit length): 7 cM1 is exceptional. Can candidate be embedded in the Lefschetz collection LC1? Not after row 0. Not after row 1. Not after row 2. Not after row 3. Not after row 4. Not after row 5. Not after row 6. Not after row 7. Yes after row 8 to the columns [0, 1, 2, 3, 4, 5, 6]. Yes after row 9 to the columns [0, 1, 2, 3, 4, 5, 6]. Yes after row 10 to the columns [0, 1, 2, 3, 4, 5, 6]. Yes after row 11 to the columns [0, 1, 2, 3, 4, 5, 6]. Can candidate be embedded in the Lefschetz collection LC2? Not after row 0. Not after row 1. Not after row 2. Not after row 3. Not after row 4. Not after row 5. Not after row 6. Not after row 7. Not after row 8. Not after row 9. Yes after row 10 to the columns [0, 1, 2, 3, 4, 5, 6]. Yes after row 11 to the columns [0, 1, 2, 3, 4, 5, 6]. X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 13-dimensional ambient vector space. (n=6) Dimension: 24 Rank of K0(X) (max. collection length): 160 Fano index (max. orbit length): 9 cM1 is exceptional. Can candidate be embedded in the Lefschetz collection LC1? Not after row 0. Not after row 1. Not after row 2. Not after row 3. Not after row 4. Not after row 5. Not after row 6. Not after row 7. Not after row 8. Not after row 9.
k = 3 for n in [ 4 .. 10 ] : N = 2*n+1 X = Orthogonal_Grassmannian(k,N) G = X.Parent_Group() fw = X.Basis('fw') print( 'X: '+str(X) ) print( 3*' ' , '(n='+str(n)+')' ) d = X.Dimension() print( 3*' ' , 'Dimension: '+str(d) ) lMax = X.K0().rank() print( 3*' ' , 'Rank of K0(X) (max. collection length): '+str(lMax) ) wMax = X.Fano_Index() print( 3*' ' , 'Fano index (max. orbit length): '+str(wMax) ) print() if n == 4 : cR = X.calU( 2*fw[4] )(-1) else : cR = X.calU( fw[4] )(-1) cM2 = X.calU().Dual()*cR.Wedge(n-3) + cR.Wedge(n-3) + cR.Wedge(n-4) cM1 = cM2*-1 for Smd in ( X.calS()*G.rmV( fw[n] ) ).Irreducible_Components() : cM1 += Smd print(cM1)
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 9-dimensional ambient vector space. (n=4) Dimension: 12 Rank of K0(X) (max. collection length): 32 Fano index (max. orbit length): 5 VB(Lambda[2] + 2*Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1]) + VB(2*Lambda[4]) + VB(0)(1) X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 11-dimensional ambient vector space. (n=5) Dimension: 18 Rank of K0(X) (max. collection length): 80 Fano index (max. orbit length): 7 VB(Lambda[2] + 2*Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(0) X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 13-dimensional ambient vector space. (n=6) Dimension: 24 Rank of K0(X) (max. collection length): 160 Fano index (max. orbit length): 9 VB(Lambda[2] + 2*Lambda[6])(-1) + VB(Lambda[2] + Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[5])(-1) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[6]) + VB(Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(Lambda[4])(-1) + VB(0) X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 15-dimensional ambient vector space. (n=7) Dimension: 30 Rank of K0(X) (max. collection length): 280 Fano index (max. orbit length): 11 VB(Lambda[2] + 2*Lambda[7])(-1) + VB(Lambda[2] + Lambda[6])(-1) + VB(Lambda[2] + Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[6])(-1) + VB(Lambda[1] + Lambda[5])(-1) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[7]) + VB(Lambda[6]) + VB(Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(Lambda[5])(-1) + VB(Lambda[4])(-1) + VB(0) X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 17-dimensional ambient vector space. (n=8) Dimension: 36 Rank of K0(X) (max. collection length): 448 Fano index (max. orbit length): 13 VB(Lambda[2] + 2*Lambda[8])(-1) + VB(Lambda[2] + Lambda[7])(-1) + VB(Lambda[2] + Lambda[6])(-1) + VB(Lambda[2] + Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[7])(-1) + VB(Lambda[1] + Lambda[6])(-1) + VB(Lambda[1] + Lambda[5])(-1) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[8]) + VB(Lambda[7]) + VB(Lambda[6]) + VB(Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(Lambda[6])(-1) + VB(Lambda[5])(-1) + VB(Lambda[4])(-1) + VB(0) X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 19-dimensional ambient vector space. (n=9) Dimension: 42 Rank of K0(X) (max. collection length): 672 Fano index (max. orbit length): 15 VB(Lambda[2] + 2*Lambda[9])(-1) + VB(Lambda[2] + Lambda[8])(-1) + VB(Lambda[2] + Lambda[7])(-1) + VB(Lambda[2] + Lambda[6])(-1) + VB(Lambda[2] + Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[8])(-1) + VB(Lambda[1] + Lambda[7])(-1) + VB(Lambda[1] + Lambda[6])(-1) + VB(Lambda[1] + Lambda[5])(-1) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[9]) + VB(Lambda[8]) + VB(Lambda[7]) + VB(Lambda[6]) + VB(Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(Lambda[7])(-1) + VB(Lambda[6])(-1) + VB(Lambda[5])(-1) + VB(Lambda[4])(-1) + VB(0) X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 21-dimensional ambient vector space. (n=10) Dimension: 48 Rank of K0(X) (max. collection length): 960 Fano index (max. orbit length): 17 VB(Lambda[2] + 2*Lambda[10])(-1) + VB(Lambda[2] + Lambda[9])(-1) + VB(Lambda[2] + Lambda[8])(-1) + VB(Lambda[2] + Lambda[7])(-1) + VB(Lambda[2] + Lambda[6])(-1) + VB(Lambda[2] + Lambda[5])(-1) + VB(Lambda[2] + Lambda[4])(-1) + VB(Lambda[2]) + VB(Lambda[1] + Lambda[9])(-1) + VB(Lambda[1] + Lambda[8])(-1) + VB(Lambda[1] + Lambda[7])(-1) + VB(Lambda[1] + Lambda[6])(-1) + VB(Lambda[1] + Lambda[5])(-1) + VB(Lambda[1] + Lambda[4])(-1) + VB(Lambda[1]) + VB(2*Lambda[10]) + VB(Lambda[9]) + VB(Lambda[8]) + VB(Lambda[7]) + VB(Lambda[6]) + VB(Lambda[5]) + VB(Lambda[4]) + VB(0)(1) + VB(Lambda[8])(-1) + VB(Lambda[7])(-1) + VB(Lambda[6])(-1) + VB(Lambda[5])(-1) + VB(Lambda[4])(-1) + VB(0)