Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Environment to perform calculations of equivariant vector bundles on homogeneous varieties

1842 views
License: GPL3
ubuntu2204
Kernel: SageMath 10.3
%run '/home/user/Equivariant_Vector_Bundles_On_Homogeneous_Varieties__0-2/tests/Initialize.ipynb' from IPython.display import clear_output , display , HTML from Equivariant_Vector_Bundles_On_Homogeneous_Varieties.Base_Space.Orthogonal_Grassmannian import Orthogonal_Grassmannian
X = Orthogonal_Grassmannian( 2 , 11 ) n = X.Cartan_Degree() print( X ) print() assert X.Is_Adjoint() , \ 'The homogeneous variety X is not adjoint.' fw = X.Basis('fw') Rho = sum(fw.values()) r = (X.Dimension()-1)/2 print( 'We have '+str(X.Dimension())+' = dim X = 2*r+1 for r='+str(r)+'.' ) print() #CM = X.Cartan_Matrix( From='ambt' , To='fw' ) i = 3 print( 'Decompose H^0( G/P , wedge^'+str(i)+' T_{G/P} ):' ) TotalCounter = 0 Restiction = '' if i <= r : for p in [ 0 .. floor(i/2) ] : print( 'Konstant´s decomposition for i='+str(i-2*p)+' and j='+str(p)+':' ) Counter = 0 for Counter , Weight in enumerate( X.Kostant_Space(i-2*p,p,Restiction) , start=1 ) : TotalCounter += 1 if X.Is_Regular( Weight+Rho ) : Regular = bcolors.OKGREEN+'regular'+bcolors.ENDC else : Regular = bcolors.FAIL+'singular'+bcolors.ENDC print( 3*' ' , str(TotalCounter)+')' , 'Weight '+bcolors.OKBLUE+str(Weight)+bcolors.ENDC+' and its sum with rho is '+Regular+'.' ) if Counter == 0 : print( 3*' ' , 'None.' ) for p in [ 0 .. floor(i/2-1/2) ] : print( 'Konstant´s decomposition for i='+str(i-2*p-1)+' and j='+str(p+1)+':' ) Counter = 0 for Counter , Weight in enumerate( X.Kostant_Space(i-2*p-1,p+1,Restiction) , start=1 ) : TotalCounter += 1 if X.Is_Regular( Weight+Rho ) : Regular = bcolors.OKGREEN+'regular'+bcolors.ENDC else : Regular = bcolors.WARNING+'singular'+bcolors.ENDC print( 3*' ' , str(TotalCounter)+')' , 'Weight '+bcolors.OKBLUE+str(Weight)+bcolors.ENDC+' and its sum with rho is '+Regular+'.' ) if Counter == 0 : print( 3*' ' , 'None.' ) else : for p in [ 0 .. r-ceil(i/2) ] : print( 'Konstant´s decomposition for i='+str(i+1+2*p)+' and j='+str(-p-1)+':' ) Counter = 0 for Counter , Weight in enumerate( X.Kostant_Space(i+1+2*p,-p-1,Restiction) , start=1 ) : TotalCounter += 1 if X.Is_Regular( Weight+Rho ) : Regular = bcolors.OKGREEN+'regular'+bcolors.ENDC else : Regular = bcolors.WARNING+'singular'+bcolors.ENDC print( 3*' ' , str(TotalCounter)+')' , 'Weight '+bcolors.OKBLUE+str(Weight)+bcolors.ENDC+' and its sum with rho is '+Regular+'.' ) if Counter == 0 : print( 3*' ' , 'None.' ) for p in [ 0 .. r-ceil(i/2-1/2) ] : print( 'Konstant´s decomposition for i='+str(i+2*p)+' and j='+str(-p-2)+':' ) Counter = 0 for Counter , Weight in enumerate( X.Kostant_Space(i+2*p,-p-2,Restiction) , start=1 ) : TotalCounter += 1 if X.Is_Regular( Weight+Rho ) : Regular = bcolors.OKGREEN+'regular'+bcolors.ENDC else : Regular = bcolors.WARNING+'singular'+bcolors.ENDC print( 3*' ' , str(TotalCounter)+')' , 'Weight '+bcolors.OKBLUE+str(Weight)+bcolors.ENDC+' and its sum with rho is '+Regular+'.' ) if Counter == 0 : print( 3*' ' , 'None.' )
Orthogonal grassmannian variety of 2-dimensional isotropic linear subspaces in a 11-dimensional ambient vector space. We have 15 = dim X = 2*r+1 for r=7. Decompose H^0( G/P , wedge^3 T_{G/P} ): Konstant´s decomposition for i=3 and j=0: 1) Weight 3*Lambda[1] - Lambda[2] + 2*Lambda[5] and its sum with rho is singular. 2) Weight Lambda[1] - Lambda[2] + Lambda[3] + Lambda[4] and its sum with rho is singular. Konstant´s decomposition for i=1 and j=1: 3) Weight Lambda[1] + Lambda[3] and its sum with rho is regular. Konstant´s decomposition for i=2 and j=1: 4) Weight 2*Lambda[1] + Lambda[4] and its sum with rho is regular. 5) Weight 2*Lambda[3] and its sum with rho is regular. Konstant´s decomposition for i=0 and j=2: 6) Weight 2*Lambda[2] and its sum with rho is regular.