Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

Environment to perform calculations of equivariant vector bundles on homogeneous varieties

2641 views
License: GPL3
ubuntu2204
Kernel: SageMath 10.3
%run '../Initialize.ipynb' from Equivariant_Vector_Bundles_On_Homogeneous_Varieties.Base_Space.Orthogonal_Grassmannian import Orthogonal_Grassmannian
k = 3 n = 4 N = 2*n+1 X = Orthogonal_Grassmannian(k,N) G = X.Parent_Group() fw = X.Basis('fw')
cR = X.calU( 2*fw[4] )(-1) E = X.calU().Dual() * cR print( 'cU.Dual * cR = '+str( E ) ) print( '-> rank = '+str(E.Rank()) ) print() print( 'Wedge^9 E = '+str(E.Wedge(9)) ) print( 'Wedge^3 cU.Dual = '+str(X.calU().Dual().Wedge(3)) ) print( 'Wedge^3 cR = '+str(cR.Wedge(3)) )
cU.Dual * cR = VB(Lambda[1] + 2*Lambda[4])(-1) -> rank = 9 Wedge^9 E = VB(0)(3) Wedge^3 cU.Dual = VB(0)(1) Wedge^3 cR = VB(0)
print( 'Irreducible components of trivial vector bundle rV*cO:' ) for Smd in X.Trivial_Vector_Bundle().Irreducible_Components() : print( 3*' ' , Smd ) print() cR = X.calU( 2*fw[4] )(-1) cQ = X.calU().Dual().Extend_Equivariantly_By( cR ) print( 'cQ:' , cQ ) print() cT_ss = X.calU().Dual()*cQ.SemiSimplification() - X.calU().Dual().Symmetric_Power(2) print( 'Semi-simplification of cT:' , cT_ss ) print() A = X.calU().Dual().Wedge(2) print( 'A='+str(A) ) B = X.calU().Dual() * cR print( 'B='+str(B) ) print( 'EXT(A,B) = '+str(A.EXT(B)) )
Irreducible components of trivial vector bundle rV*cO: VB(Lambda[1]) VB(2*Lambda[4])(-1) VB(Lambda[2])(-1) cQ: Equivariant extension of VB(Lambda[1]) by VB(2*Lambda[4])(-1) Semi-simplification of cT: VB(Lambda[2]) + VB(Lambda[1] + 2*Lambda[4])(-1) A=VB(Lambda[2]) B=VB(Lambda[1] + 2*Lambda[4])(-1) EXT(A,B) = {1: B4(0,0,0,0)}