Environment to perform calculations of equivariant vector bundles on homogeneous varieties
License: GPL3
ubuntu2204
Kernel: SageMath 9.8
In [1]:
In [4]:
Out[4]:
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 11-dimensional ambient vector space.
(n=5)
Dimension: 18
Rank of K0(X) (max. collection length): 80
Fano index (max. orbit length): 7
Consecutive Lefschetz collection.
Starting block:
1 VB(0)
2 VB(Lambda[1])
3 VB(Lambda[2])
4 VB(2*Lambda[1])
5 VB(Lambda[1] + Lambda[2])
6 VB(2*Lambda[2])
7 VB(2*Lambda[1] + Lambda[2])
8 VB(Lambda[5])
9 Equivariant extension of VB(Lambda[1] + Lambda[5]) by VB(Lambda[5])
10 Equivariant extension of VB(2*Lambda[1] + Lambda[5]) by VB(Lambda[1] + Lambda[5])
11 Equivariant extension of VB(3*Lambda[1] + Lambda[5]) by VB(2*Lambda[1] + Lambda[5])
Alternating Lefschetz collection.
Starting block:
1 VB(0)
2 VB(Lambda[5])
3 VB(Lambda[1])
4 VB(Lambda[2])
5 Equivariant extension of VB(Lambda[1] + Lambda[5]) by VB(Lambda[5])
6 VB(2*Lambda[1])
7 VB(Lambda[1] + Lambda[2])
8 VB(2*Lambda[2])
9 Equivariant extension of VB(2*Lambda[1] + Lambda[5]) by VB(Lambda[1] + Lambda[5])
10 VB(2*Lambda[1] + Lambda[2])
11 Equivariant extension of VB(3*Lambda[1] + Lambda[5]) by VB(2*Lambda[1] + Lambda[5])
Gap.
lMax-l = 7
(lMax-l)/wMax = 1
Try to fill the gap.
Semi-simplification is VB(Lambda[2] - Lambda[3] + 2*Lambda[5]) + VB(Lambda[2] - Lambda[3] + Lambda[4]) + VB(Lambda[2]) + VB(Lambda[1] - Lambda[3] + Lambda[4]) + VB(Lambda[1]) + VB(2*Lambda[5]) + VB(Lambda[4]) + VB(Lambda[3]) + VB(0).
Can candidate be embedded in the Lefschetz collection LC1?
Not after row 0.
Not after row 1.
Not after row 2.
Not after row 3.
Not after row 4.
Not after row 5.
Not after row 6.
Not after row 7.
Yes after row 8 to the columns [0, 1, 2, 3, 4, 5, 6].
Yes after row 9 to the columns [0, 1, 2, 3, 4, 5, 6].
Yes after row 10 to the columns [0, 1, 2, 3, 4, 5, 6].
Yes after row 11 to the columns [0, 1, 2, 3, 4, 5, 6].
Can candidate be embedded in the Lefschetz collection LC2?
Not after row 0.
Not after row 1.
Not after row 2.
Not after row 3.
Not after row 4.
Not after row 5.
Not after row 6.
Not after row 7.
Not after row 8.
Not after row 9.
Yes after row 10 to the columns [0, 1, 2, 3, 4, 5, 6].
Yes after row 11 to the columns [0, 1, 2, 3, 4, 5, 6].
In [0]:
In [0]:
In [2]:
Out[2]:
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 11-dimensional ambient vector space.
(n = 5)
Fano index = 7
rk K0(X) = 80
Initialise suitable objects:
- Repesentations
- Tautological bundles
- Spinor bundles
Initialise Lefschetz collection:
len(LC) = 73
0 VB(0)
1 VB(Lambda[1])
2 VB(Lambda[2])
3 VB(2*Lambda[1])
4 VB(Lambda[1] + Lambda[2])
5 VB(2*Lambda[2])
6 VB(2*Lambda[1] + Lambda[2])
7 VB(Lambda[5])
8 Equivariant extension of VB(Lambda[1] + Lambda[5]) by VB(Lambda[5])
9 Equivariant extension of VB(2*Lambda[1] + Lambda[5]) by VB(Lambda[1] + Lambda[5])
10 Equivariant extension of VB(3*Lambda[1] + Lambda[5]) by VB(2*Lambda[1] + Lambda[5])
In [3]:
Out[3]:
()
VB(0)
(1,)
VB(-Lambda[3] + Lambda[4]) + VB(Lambda[1])
(1, 1)
VB(Lambda[1] - Lambda[3] + Lambda[4]) + VB(-Lambda[3] + 2*Lambda[5]) + VB(Lambda[2])
(1, 1, 1)
VB(Lambda[1] - Lambda[3] + 2*Lambda[5]) + VB(Lambda[2] - Lambda[3] + Lambda[4]) + VB(-Lambda[3] + 2*Lambda[5]) + VB(Lambda[3])
(1, 1, 1, 1)
VB(Lambda[2] - Lambda[3] + 2*Lambda[5]) + VB(Lambda[1] - Lambda[3] + 2*Lambda[5]) + VB(Lambda[4]) + VB(-Lambda[3] + Lambda[4])
(1, 1, 1, 1, 1)
VB(Lambda[2] - Lambda[3] + 2*Lambda[5]) + VB(Lambda[1] - Lambda[3] + Lambda[4]) + VB(2*Lambda[5]) + VB(0)
(1, 1, 1, 1, 1, 1)
VB(Lambda[2] - Lambda[3] + Lambda[4]) + VB(2*Lambda[5]) + VB(Lambda[1])
(1, 1, 1, 1, 1, 1, 1)
VB(Lambda[4]) + VB(Lambda[2])
(1, 1, 1, 1, 1, 1, 1, 1)
VB(Lambda[3])
In [0]:
In [0]:
In [55]:
Out[55]:
cE1:
Equivariant extension of VB(Lambda[1] - Lambda[3] + 2*Lambda[5]) by VB(0) + VB(-Lambda[3] + Lambda[4]) + VB(-Lambda[3] + 2*Lambda[5])
cE2:
Equivariant extension of VB(Lambda[1] - Lambda[3] + 2*Lambda[5]) by VB(-Lambda[3] + Lambda[4]) + VB(-Lambda[3] + 2*Lambda[5])
cE3:
Equivariant extension of VB(Lambda[1]) + VB(Lambda[1] - Lambda[3] + Lambda[4]) by VB(0)
cE4:
Equivariant extension of VB(Lambda[2] - Lambda[3] + 2*Lambda[5]) + VB(Lambda[2] - Lambda[3] + Lambda[4]) + VB(Lambda[2]) by [ VB(Lambda[1]) + VB(Lambda[1] - Lambda[3] + Lambda[4]) , VB(0) ]
cE5:
Equivariant [1, 2]-extension of VB(2*Lambda[5]) + VB(Lambda[4]) + VB(Lambda[3]) by [ VB(Lambda[2] - Lambda[3] + 2*Lambda[5]) + VB(Lambda[2] - Lambda[3] + Lambda[4]) + VB(Lambda[2]) , [ VB(Lambda[1]) + VB(Lambda[1] - Lambda[3] + Lambda[4]) , VB(0) ] ]
In [77]:
Out[77]:
Summands of cM2:
VB(Lambda[1] - Lambda[3] + 2*Lambda[5])
VB(-Lambda[3] + Lambda[4])
VB(-Lambda[3] + 2*Lambda[5])
EXT( cM2.Dual(2) , cM2 ) = {4: B5(0,0,0,0,0)}
Summands of cM1:
VB(2*Lambda[5])
VB(Lambda[4])
VB(Lambda[3])
VB(Lambda[2] - Lambda[3] + 2*Lambda[5])
VB(Lambda[2] - Lambda[3] + Lambda[4])
VB(Lambda[2])
VB(Lambda[1])
VB(Lambda[1] - Lambda[3] + Lambda[4])
VB(0)
cG=VB(Lambda[5])
cG.Dual()(2)=VB(Lambda[3] + Lambda[5])
0 --> F_1 * cG --> F_1 * cG --> VB(2*Lambda[5]) + VB(Lambda[4]) + VB(Lambda[3]) --> 0
0 --> F_2 * cG --> F_2 * cG --> VB(Lambda[2] - Lambda[3] + 2*Lambda[5]) + VB(Lambda[2] - Lambda[3] + Lambda[4]) + VB(Lambda[2]) --> 0
0 --> F_3 * cG --> F_3 * cG --> VB(Lambda[1] - Lambda[3] + 2*Lambda[5]) + VB(Lambda[1] - Lambda[3] + Lambda[4]) + VB(Lambda[1]) --> 0
0 --> F_4 * cG --> F_4 * cG --> VB(-Lambda[3] + 2*Lambda[5]) + VB(-Lambda[3] + Lambda[4]) + VB(0) --> 0
In [0]:
In [118]:
Out[118]:
Rep = B5(0,0,0,0,1)
VB = VB(Lambda[1] + Lambda[5]) + VB(Lambda[5]) -> VB.Dual()(2) = VB(Lambda[2] + Lambda[5]) + VB(Lambda[3] + Lambda[5])
Remaining:
VB(Lambda[1] + Lambda[2] - Lambda[3] + 2*Lambda[5]) VB(Lambda[1] + Lambda[2] - Lambda[3] + 2*Lambda[5])
VB(Lambda[1] + Lambda[2] - Lambda[3] + Lambda[4]) VB(Lambda[1] + Lambda[2] - Lambda[3] + Lambda[4])
VB(Lambda[1] + Lambda[2]) VB(Lambda[1] + Lambda[2])
VB(2*Lambda[1] - Lambda[3] + 2*Lambda[5]) VB(2*Lambda[2] - Lambda[3] + 2*Lambda[5])
VB(2*Lambda[1] - Lambda[3] + Lambda[4]) VB(2*Lambda[2] - Lambda[3] + Lambda[4])
VB(2*Lambda[1]) VB(2*Lambda[2])
VB(Lambda[1] + 2*Lambda[5]) VB(Lambda[2] - Lambda[3] + 2*Lambda[5])
VB(Lambda[1] + Lambda[4]) VB(Lambda[2] - Lambda[3] + Lambda[4])
VB(Lambda[1] + Lambda[3]) VB(Lambda[2])
2*B5(0,0,0,0,0) * VB(Lambda[1] - Lambda[3] + 2*Lambda[5]) 2*B5(0,0,0,0,0) * VB(Lambda[2] + 2*Lambda[5])
VB(Lambda[2] - Lambda[3] + 2*Lambda[5]) VB(Lambda[1] + 2*Lambda[5])
VB(Lambda[2] - Lambda[3] + Lambda[4]) VB(Lambda[1] + Lambda[4])
VB(Lambda[2]) VB(Lambda[1] + Lambda[3])
VB(Lambda[1] - Lambda[3] + Lambda[4]) VB(Lambda[2] + Lambda[4])
VB(Lambda[1]) VB(Lambda[2] + Lambda[3])
VB(2*Lambda[5]) VB(2*Lambda[5])
VB(Lambda[4]) VB(Lambda[4])
VB(Lambda[3]) VB(Lambda[3])
VB(-Lambda[3] + 2*Lambda[5]) VB(Lambda[3] + 2*Lambda[5])
VB(-Lambda[3] + Lambda[4]) VB(Lambda[3] + Lambda[4])
In [122]:
Out[122]:
---------------------------------------------------------------------------
AssertionError Traceback (most recent call last)
Cell In [122], line 12
10 Dict.update({ Integer(2) : Stock })
11 Dict.update({ Integer(3) : 'Cokernel' })
---> 12 Dummy = X.Complex(Dict).SemiSimplification(Integer(2))
13 print( Dummy )
File /tmp/ipykernel_21256/1270618750.py:261
, in Irreducible_Homogeneous_Variety.Complex(self, Objects)
259 def Complex ( self , Objects ) -> "Complex_Over_Irreducible_Homogeneous_Variety" :
260 """Returns a complex of equivariant vector bundles over ``self``."""
--> 261 return Complex_Of_Coherent_Sheaves( Base_Space=self , Objects=Objects )
File /tmp/ipykernel_21256/1415231974.py:47
, in Complex_Of_Coherent_Sheaves.__init__(self, Base_Space, Objects)
45 if not Current_Degree in self._Numerical_Cohomology.keys() :
46 Numerical_Kernel_In_Previous_Degree , Numerical_Image_In_Previous_Degree = self.Decompose_Differential_Numerically(Current_Degree-Integer(1))
---> 47 Numerical_Kernel_In_Current_Degree , Numerical_Image_In_Current_Degree = self.Decompose_Differential_Numerically(Current_Degree)
48 if Numerical_Image_In_Previous_Degree in Numerical_Kernel_In_Current_Degree :
49 Numerical_Cohomology_Group = Numerical_Kernel_In_Current_Degree - Numerical_Image_In_Previous_Degree
File /tmp/ipykernel_21256/1415231974.py:83
, in Complex_Of_Coherent_Sheaves.Decompose_Differential_Numerically(self, Degree)
81 else :
82 Domain = self.Zero_Object()
---> 83 for Summand in Current_Object.Irreducible_Components() :
84 Domain += Summand
85 Numerical_Kernel_In_Subsequent_Degree , Numerical_Image_In_Subsequent_Degree = self.Decompose_Differential_Numerically( Degree+Integer(1) )
File /tmp/ipykernel_21256/424321877.py:337
, in Direct_Sum_Of_Equivariant_Vector_Bundles.Irreducible_Components(self)
334 yield Irreducible_Component
335 Summed_Ranks += Irreducible_Component.Rank()
--> 337 assert Summed_Ranks == self.Rank() , 'The rank of ``self`` is '+str(self.Rank())+'. However, the sum over the ranks of all irreducible components is different, namely '+str(Summed_Ranks)+'.'
AssertionError: The rank of ``self`` is 45. However, the sum over the ranks of all irreducible components is different, namely 30.
In [0]:
In [11]:
Out[11]:
Candidate for a new object: Equivariant extension of VB(Lambda[1] - Lambda[3] + Lambda[4]) + VB(Lambda[1]) by VB(0)
Orbit length: 0
The candidate is NOT exceptional.
In [35]:
Out[35]:
VB(2*Lambda[5]) VB(2*Lambda[5])
VB(Lambda[4]) VB(Lambda[4])
VB(Lambda[3]) VB(Lambda[3])
VB(Lambda[2] - Lambda[3] + 2*Lambda[5]) VB(Lambda[1] + 2*Lambda[5])
VB(Lambda[2] - Lambda[3] + Lambda[4]) VB(Lambda[1] + Lambda[4])
VB(Lambda[2]) VB(Lambda[1] + Lambda[3])
2*B5(0,0,0,0,0) * VB(Lambda[1]) 2*B5(0,0,0,0,0) * VB(Lambda[2] + Lambda[3])
VB(Lambda[1] - Lambda[3] + Lambda[4]) VB(Lambda[2] + Lambda[4])
In [40]:
Out[40]:
VB(0)
VB(-Lambda[3] + Lambda[4])
VB(-Lambda[3] + 2*Lambda[5])
VB(-Lambda[3] + 2*Lambda[5])
VB(-Lambda[3] + Lambda[4])
VB(0)
In [0]:
In [0]:
In [0]:
In [0]:
In [4]:
Out[4]:
Base space: OGr(3;11)
rk K0(X): 80
Fano index: 7
Objects of starting block:
Number of objects: 66
LC has maximal expected length? False
In [0]:
In [7]:
Out[7]:
Lefschetz collection consisting of 0 objects in a grid with width = 1 and height = 0
Result for column=0: []
Result for column=1: []
Result for column=2: []
Result for column=3: []
Result for column=4: []
Result for column=5: []
Result for column=6: []
Result for column=7: []
Result for column=8: []
Result for column=9: []
Result for column=10: []
In [0]:
In [31]:
Out[31]:
cF_0 = B5(0,0,0,0,1) * VB(3*Lambda[1] + Lambda[3])
0 --> cF_1 --> cF_0 --> VB(3*Lambda[1] + Lambda[3] + Lambda[5]) --> 0
0 --> cF_2 --> cF_1 --> VB(3*Lambda[1] + Lambda[2] + Lambda[5]) + VB(2*Lambda[1] + Lambda[3] + Lambda[5]) --> 0
0 --> cF_3 --> cF_2 --> VB(4*Lambda[1] + Lambda[5]) + VB(2*Lambda[1] + Lambda[2] + Lambda[5]) --> 0
cF_3 = VB(3*Lambda[1] + Lambda[5])
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [0]:
In [91]:
Out[91]:
Base space: Smooth projective variety B5/P({1, 2, 4, 5}).
Rank of Grothendieck group rk( K_0(X) ) = 80
Consider version 2.
Objects of starting block:
1: VB(0)
2: Equivariant extension of VB(Lambda[1]) by VB(-Lambda[3] + Lambda[4])
3: VB(Lambda[1])
4: Equivariant extension of [ [ VB(Lambda[2]) , VB(Lambda[1] - Lambda[3] + Lambda[4]) ] , VB(-Lambda[3] + 2*Lambda[5]) ] by VB(0)
5: VB(2*Lambda[1])
6: VB(Lambda[5])
7: Equivariant extension of VB(Lambda[1] + Lambda[5]) by VB(Lambda[5])
8: Equivariant extension of VB(2*Lambda[1] + Lambda[5]) by VB(Lambda[1] + Lambda[5])
9: Equivariant extension of VB(3*Lambda[1] + Lambda[5]) by VB(2*Lambda[1] + Lambda[5])
Grid of LC:
cO cQ cUVee [Wedge2-cQ,cO] (Sym2-cUVee) cS1 cS2 cS3 cS4
cO(1) cQ(1) cUVee(1) [Wedge2-cQ,cO](1) (Sym2-cUVee)(1) cS1(1) cS2(1) cS3(1) cS4(1)
cO(2) cQ(2) cUVee(2) [Wedge2-cQ,cO](2) (Sym2-cUVee)(2) cS1(2) cS2(2) cS3(2) cS4(2)
cO(3) cQ(3) cUVee(3) [Wedge2-cQ,cO](3) (Sym2-cUVee)(3) cS1(3) cS2(3) cS3(3)
cO(4) cQ(4) cUVee(4) [Wedge2-cQ,cO](4) (Sym2-cUVee)(4) cS1(4) cS2(4) cS3(4)
cO(5) cQ(5) cUVee(5) [Wedge2-cQ,cO](5) (Sym2-cUVee)(5) cS1(5) cS2(5) cS3(5)
cO(6) cQ(6) cUVee(6) [Wedge2-cQ,cO](6) (Sym2-cUVee)(6) cS1(6) cS2(6) cS3(6)
Number of objects: 59
LC has maximal expected length? False
Is LC numerially exceptional? True
In [0]: