Environment to perform calculations of equivariant vector bundles on homogeneous varieties
License: GPL3
ubuntu2204
X: Orthogonal grassmannian variety of 3-dimensional isotropic linear subspaces in a 19-dimensional ambient vector space.
(n=9)
Dimension: 42
Rank of K0(X) (max. collection length): 672
Fano index (max. orbit length): 15
Consecutive Lefschetz collection.
Starting block:
1 VB(0)
2 VB(Lambda[1])
3 VB(Lambda[2])
4 VB(2*Lambda[1])
5 VB(Lambda[1] + Lambda[2])
6 VB(2*Lambda[2])
7 VB(3*Lambda[1])
8 VB(2*Lambda[1] + Lambda[2])
9 VB(Lambda[1] + 2*Lambda[2])
10 VB(3*Lambda[2])
11 VB(4*Lambda[1])
12 VB(3*Lambda[1] + Lambda[2])
13 VB(2*Lambda[1] + 2*Lambda[2])
14 VB(Lambda[1] + 3*Lambda[2])
15 VB(4*Lambda[2])
16 VB(5*Lambda[1])
17 VB(4*Lambda[1] + Lambda[2])
18 VB(3*Lambda[1] + 2*Lambda[2])
19 VB(2*Lambda[1] + 3*Lambda[2])
20 VB(Lambda[1] + 4*Lambda[2])
21 VB(5*Lambda[2])
22 VB(6*Lambda[1])
23 VB(5*Lambda[1] + Lambda[2])
24 VB(4*Lambda[1] + 2*Lambda[2])
25 VB(3*Lambda[1] + 3*Lambda[2])
26 VB(2*Lambda[1] + 4*Lambda[2])
27 VB(Lambda[1] + 5*Lambda[2])
28 VB(6*Lambda[2])
29 VB(6*Lambda[1] + Lambda[2])
30 VB(5*Lambda[1] + 2*Lambda[2])
31 VB(4*Lambda[1] + 3*Lambda[2])
32 VB(6*Lambda[1] + 2*Lambda[2])
33 VB(5*Lambda[1] + 3*Lambda[2])
34 VB(6*Lambda[1] + 3*Lambda[2])
35 VB(Lambda[9])
36 Equivariant extension of VB(Lambda[1] + Lambda[9]) by VB(Lambda[9])
37 Equivariant extension of VB(2*Lambda[1] + Lambda[9]) by VB(Lambda[1] + Lambda[9])
38 Equivariant extension of VB(3*Lambda[1] + Lambda[9]) by VB(2*Lambda[1] + Lambda[9])
39 Equivariant extension of VB(4*Lambda[1] + Lambda[9]) by VB(3*Lambda[1] + Lambda[9])
40 Equivariant extension of VB(5*Lambda[1] + Lambda[9]) by VB(4*Lambda[1] + Lambda[9])
41 Equivariant extension of VB(6*Lambda[1] + Lambda[9]) by VB(5*Lambda[1] + Lambda[9])
42 Equivariant extension of VB(7*Lambda[1] + Lambda[9]) by VB(6*Lambda[1] + Lambda[9])
Alternating Lefschetz collection.
Starting block:
1 VB(0)
2 VB(Lambda[9])
3 VB(Lambda[1])
4 VB(Lambda[2])
5 Equivariant extension of VB(Lambda[1] + Lambda[9]) by VB(Lambda[9])
6 VB(2*Lambda[1])
7 VB(Lambda[1] + Lambda[2])
8 VB(2*Lambda[2])
9 Equivariant extension of VB(2*Lambda[1] + Lambda[9]) by VB(Lambda[1] + Lambda[9])
10 VB(3*Lambda[1])
11 VB(2*Lambda[1] + Lambda[2])
12 VB(Lambda[1] + 2*Lambda[2])
13 VB(3*Lambda[2])
14 Equivariant extension of VB(3*Lambda[1] + Lambda[9]) by VB(2*Lambda[1] + Lambda[9])
15 VB(4*Lambda[1])
16 VB(3*Lambda[1] + Lambda[2])
17 VB(2*Lambda[1] + 2*Lambda[2])
18 VB(Lambda[1] + 3*Lambda[2])
19 VB(4*Lambda[2])
20 Equivariant extension of VB(4*Lambda[1] + Lambda[9]) by VB(3*Lambda[1] + Lambda[9])
21 VB(5*Lambda[1])
22 VB(4*Lambda[1] + Lambda[2])
23 VB(3*Lambda[1] + 2*Lambda[2])
24 VB(2*Lambda[1] + 3*Lambda[2])
25 VB(Lambda[1] + 4*Lambda[2])
26 VB(5*Lambda[2])
27 Equivariant extension of VB(5*Lambda[1] + Lambda[9]) by VB(4*Lambda[1] + Lambda[9])
28 VB(6*Lambda[1])
29 VB(5*Lambda[1] + Lambda[2])
30 VB(4*Lambda[1] + 2*Lambda[2])
31 VB(3*Lambda[1] + 3*Lambda[2])
32 VB(2*Lambda[1] + 4*Lambda[2])
33 VB(Lambda[1] + 5*Lambda[2])
34 VB(6*Lambda[2])
35 Equivariant extension of VB(6*Lambda[1] + Lambda[9]) by VB(5*Lambda[1] + Lambda[9])
36 VB(6*Lambda[1] + Lambda[2])
37 VB(5*Lambda[1] + 2*Lambda[2])
38 VB(4*Lambda[1] + 3*Lambda[2])
39 Equivariant extension of VB(7*Lambda[1] + Lambda[9]) by VB(6*Lambda[1] + Lambda[9])
40 VB(6*Lambda[1] + 2*Lambda[2])
41 VB(5*Lambda[1] + 3*Lambda[2])
42 VB(6*Lambda[1] + 3*Lambda[2])
Gap.
lMax-l = 50
(lMax-l)/wMax = 10/3
Try to fill the gap.
Start later than candidate #13.
Current counter: 24
Test for candidate #24:
Semi-simplification is VB(10*Lambda[1] + Lambda[2]).
Can candidate be embedded in the Lefschetz collection LC1?
Not after row 33.
Not after row 34.
Not after row 35.
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
, in Equivariant_Vector_Bundle.EXT(self, other, *p)
178 try :
--> 179 return ( E1.Dual() * E2 ).Cohomology( *p )
180 except :
, in Direct_Sum_Of_Equivariant_Vector_Bundles.__mul__(self, other)
96 for Weyl_Character_HW , Weyl_Character_Multiplicity in Multiplicity_1 * Multiplicity_2 :
---> 97 for VB , Mult in ( Vector_Bundle_1 * Vector_Bundle_2 ).SemiSimplification().Summands() :
98 Product += self.__class__( Base_Space=self.Base_Space() , Summands=[ ( VB , Mult * Weyl_Character_Multiplicity * WCR(Weyl_Character_HW) ) ] )
, in Irreducible_Equivariant_Vector_Bundle.__mul__(self, other)
40 # Product of Levi parts, i.e. product of the representations of highest weights supported over the total Levi part
---> 41 Prd_Levi_Rep = self.Representation_Supported_Over_Levi_Part(Decomposition_Style='Coarse') * other.Representation_Supported_Over_Levi_Part(Decomposition_Style='Coarse')
43 # In the remaining part, we merge the separate products over both the twisting part (excluded nodes) and the Levi part (included nodes)
44 # 1. Define subroutine to get coefficients and multiplicities of a given weyl character
, in Irreducible_Equivariant_Vector_Bundle.Representation_Supported_Over_Levi_Part(self, Decomposition_Style)
315 WCR = self.Base_Space().Parabolic_Subgroup().Initialize_As_Cartan_Group().Weyl_Character_Ring()
--> 316 Basis = self.Base_Space().Parabolic_Subgroup().Initialize_As_Cartan_Group().Cartan_Type().root_system().weight_space().fundamental_weights()
317 return WCR( sum([ Highest_Weight[Node]*Basis[Relabel] for Node , Relabel in Relabelling.items() ]) )
, in Parabolic_Subgroup_In_Irreducible_Cartan_Group.Initialize_As_Cartan_Group(self)
113 """
114 Returns the Cartan group associated to the Cartan string of ``self``.
115 Thus, one has access to the methods of the class ``Cartan_Group`` and its subclasses.
116 """
--> 117 Components = [ Irreducible_Cartan_Group( Cartan_Family , Cartan_Degree ) for Cartan_Family , Cartan_Degree in self.Cartan_Data() ]
118 if len(Components) == Integer(1) : return Components[Integer(0)]
, in <listcomp>(.0)
113 """
114 Returns the Cartan group associated to the Cartan string of ``self``.
115 Thus, one has access to the methods of the class ``Cartan_Group`` and its subclasses.
116 """
--> 117 Components = [ Irreducible_Cartan_Group( Cartan_Family , Cartan_Degree ) for Cartan_Family , Cartan_Degree in self.Cartan_Data() ]
118 if len(Components) == Integer(1) : return Components[Integer(0)]
, in Parabolic_Subgroup_In_Irreducible_Cartan_Group.Cartan_Data(self)
36 for Connected_Component in self.Connected_Components_Of_Included_Nodes() :
---> 37 Cartan_Subtype = self.Parent_Group().Cartan_Type().subtype( Connected_Component )
38 yield Cartan_Subtype.type() , len(Cartan_Subtype.index_set())
, in CartanType_abstract.subtype(self, index_set)
1240 """
1241 Return a subtype of ``self`` given by ``index_set``.
1242
(...)
1254 ['C', 3]
1255 """
-> 1256 return self.cartan_matrix().subtype(index_set).cartan_type()
, in CartanMatrix.subtype(self, index_set)
577 I = [ind.index(i) for i in index_set]
--> 578 return CartanMatrix(self.matrix_from_rows_and_columns(I, I), index_set)
, in sage.misc.classcall_metaclass.ClasscallMetaclass.__call__()
319 if cls.classcall is not None:
--> 320 return cls.classcall(cls, *args, **kwds)
321 else:
, in CartanMatrix.__classcall_private__(cls, data, index_set, cartan_type, cartan_type_check, borcherds)
329 # FIXME: We have to initialize the CartanMatrix part separately because
330 # of the __cinit__ of the matrix. We should get rid of this workaround
--> 331 mat._CM_init(cartan_type, index_set, cartan_type_check)
332 mat._subdivisions = subdivisions
, in CartanMatrix._CM_init(self, cartan_type, index_set, cartan_type_check)
390 self._cartan_type = None
--> 391 cartan_type = find_cartan_type_from_matrix(self)
393 self._cartan_type = cartan_type
, in find_cartan_type_from_matrix(CM)
1148 ct = CartanType(x)
-> 1149 T = DiGraph(ct.dynkin_diagram()) # We need a simple digraph here
1150 iso, match = T.is_isomorphic(S, certificate=True, edge_labels=True)
, in DiGraph.__init__(self, data, pos, loops, format, weighted, data_structure, vertex_labels, name, multiedges, convert_empty_dict_labels_to_None, sparse, immutable)
774 self.set_vertices(data.get_vertices())
--> 775 data._backend.subgraph_given_vertices(self._backend, data)
776 self.name(data.name())
, in cysignals.signals.python_check_interrupt()
KeyboardInterrupt:
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
Cell In [23], line 33
27 #Test for object
28 #Subsets of length: 3
29 #StartWidth: 5930
30 #Currently tested object: VB(-Lambda[3] + Lambda[7]) + VB(Lambda[1] - Lambda[3] + Lambda[8]) + VB(6*Lambda[1])
32 Results_For_Single_Objects = []
---> 33 for Column , Rows in LC.Test_For_Numerically_Exceptional_Proper_Extension( New_Object=New_Object , Relevant_Columns=set((ellipsis_range( Integer(28) ,Ellipsis, Integer(35) ))), Test_If_Self_Is_Exceptional=False ) :
34 Output = 'Result for column='+str(Column)+': '+str(Rows)
35 print( Output )
, in Lefschetz_Collection.Test_For_Numerically_Exceptional_Proper_Extension(self, New_Object, Relevant_Columns, Test_If_Self_Is_Exceptional)
575 return True
577 for Tested_xPos in Relevant_Columns :
578 #Already_Tested = dict({})
--> 579 yield ( Tested_xPos , [ Tested_yPos for Tested_yPos in range(len(New_Orbit)) if Test_For( Tested_xPos , Tested_yPos ) ] )
, in <listcomp>(.0)
575 return True
577 for Tested_xPos in Relevant_Columns :
578 #Already_Tested = dict({})
--> 579 yield ( Tested_xPos , [ Tested_yPos for Tested_yPos in range(len(New_Orbit)) if Test_For( Tested_xPos , Tested_yPos ) ] )
, in Lefschetz_Collection.Test_For_Numerically_Exceptional_Proper_Extension.<locals>.Test_For(xPos1, yPos1)
570 if not next( Object1.Is_SemiOrthogonal_To( Object2 , Test_Numerically=Test_Numerically ) ) : return False
571 else :
572 #if not yPos2-yPos1 in Already_Tested[xPos2][1] :
573 # Already_Tested[xPos2][1].add( yPos2-yPos1 )
--> 574 if not next( Object2.Is_SemiOrthogonal_To( Object1 , Test_Numerically=Test_Numerically ) ) : return False
575 return True
, in Equivariant_Vector_Bundle.Is_SemiOrthogonal_To(self, others, Test_Numerically)
267 else : yield False
269 elif Test_Numerically == True :
--> 270 if self.Euler_Sum( other ) == WCR(Integer(0)) : yield True
271 else : yield False
273 else :
, in Equivariant_Vector_Bundle.Euler_Sum(self, other)
158 """Returns sum_{ p } (-1)^p EXT^p(``self``,``other``)."""
159 WCR = self.Base_Space().Parent_Group().Weyl_Character_Ring()
--> 160 Result = sum([ (-Integer(1))**Degree * Weyl_Character for Degree , Weyl_Character in self.EXT(other).items() ])
161 if Result == Integer(0) : return WCR(Integer(0))
162 else : return Result
, in Equivariant_Vector_Bundle.EXT(self, other, *p)
179 return ( E1.Dual() * E2 ).Cohomology( *p )
180 except :
--> 181 raise ValueError( 'Not able to compute EXT(E1,E2) with\n'+'E1='+str(E1)+'\n'+'E2='+str(E2)+'.' )
ValueError: Not able to compute EXT(E1,E2) with
E1=VB(2*Lambda[2] + 2*Lambda[3])
E2=VB(0) + VB(Lambda[1] - Lambda[3] + Lambda[4]).
Counter: 1 New object which is tested: Equivariant extension of VB(Lambda[1] - Lambda[3] + 2Lambda[9]) by VB(-Lambda[3] + 2Lambda[9]) + VB(-Lambda[3] + Lambda[8]) In the column=28: [] In the column=29: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] In the column=30: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] In the column=31: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] In the column=32: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] In the column=33: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] In the column=34: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] In the column=35: []
Counter: 2 New object which is tested: Equivariant [3, 1]-extension of VB(3Lambda[1] - Lambda[3] + Lambda[8]) by VB(2Lambda[1] - Lambda[3] + Lambda[7]) + VB(-Lambda[3] + Lambda[8]) In the column=28: [] In the column=29: [] In the column=30: [] In the column=31: [] In the column=32: [] In the column=33: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] In the column=34: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] In the column=35: []