GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it
1[1X5 [33X[0;0YGradedModules[133X[101X234[1X5.1 [33X[0;0YGradedModules: Category and Representations[133X[101X567[1X5.2 [33X[0;0YGradedModules: Constructors[133X[101X8910[1X5.3 [33X[0;0YGradedModules: Properties[133X[101X1112[33X[0;0YFor more properties see the corresponding section [14X'Modules: Modules:13Properties'[114X) in the documentation of the [5Xhomalg[105X package.[133X141516[1X5.4 [33X[0;0YGradedModules: Attributes[133X[101X1718[1X5.4-1 BettiTable[101X1920[29X[2XBettiTable[102X( [3XM[103X ) [32X attribute21[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X diagram[133X2223[33X[0;0YThe Betti diagram of the [5Xhomalg[105X graded module [3XM[103X.[133X2425[1X5.4-2 CastelnuovoMumfordRegularity[101X2627[29X[2XCastelnuovoMumfordRegularity[102X( [3XM[103X ) [32X attribute28[6XReturns:[106X [33X[0;10Yan integer[133X2930[33X[0;0YThe Castelnuovo-Mumford regularity of the [5Xhomalg[105X graded module [3XM[103X.[133X3132[1X5.4-3 CastelnuovoMumfordRegularityOfSheafification[101X3334[29X[2XCastelnuovoMumfordRegularityOfSheafification[102X( [3XM[103X ) [32X attribute35[6XReturns:[106X [33X[0;10Yan integer[133X3637[33X[0;0YThe Castelnuovo-Mumford regularity of the sheafification of [5Xhomalg[105X graded38module [3XM[103X.[133X3940[33X[0;0YFor more attributes see the corresponding section [14X'Modules: Modules:41Attributes'[114X) in the documentation of the [5Xhomalg[105X package.[133X424344[1X5.5 [33X[0;0Y[5XLISHV[105X[101X[1X: Logical Implications for GradedModules[133X[101X454647[1X5.6 [33X[0;0YGradedModules: Operations and Functions[133X[101X4849[1X5.6-1 MonomialMap[101X5051[29X[2XMonomialMap[102X( [3Xd[103X, [3XM[103X ) [32X operation52[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X map[133X5354[33X[0;0YThe map from a free graded module onto all degree [3Xd[103X monomial generators of55the finitely generated [5Xhomalg[105X module [3XM[103X.[133X5657[4X[32X Example [32X[104X58[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X59[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X60[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X61[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X62[4X[28X<A graded non-torsion left module presented by 2 relations for 3 generators>[128X[104X63[4X[25Xgap>[125X [27Xm := MonomialMap( 1, M );[127X[104X64[4X[28X<A homomorphism of graded left modules>[128X[104X65[4X[25Xgap>[125X [27XDisplay( m );[127X[104X66[4X[28Xx^2,0,0,[128X[104X67[4X[28Xx*y,0,0,[128X[104X68[4X[28Xx*z,0,0,[128X[104X69[4X[28Xy^2,0,0,[128X[104X70[4X[28Xy*z,0,0,[128X[104X71[4X[28Xz^2,0,0,[128X[104X72[4X[28X0, x,0,[128X[104X73[4X[28X0, y,0,[128X[104X74[4X[28X0, z,0,[128X[104X75[4X[28X0, 0,1 [128X[104X76[4X[28X[128X[104X77[4X[28Xthe graded map is currently represented by the above 10 x 3 matrix[128X[104X78[4X[28X[128X[104X79[4X[28X(degrees of generators of target: [ -1, 0, 1 ])[128X[104X80[4X[32X[104X8182[1X5.6-2 RandomMatrix[101X8384[29X[2XRandomMatrix[102X( [3XS[103X, [3XT[103X ) [32X operation85[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X matrix[133X8687[33X[0;0YA random matrix between the graded source module [3XS[103X and the graded target88module [3XT[103X.[133X8990[4X[32X Example [32X[104X91[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "a,b,c";;[127X[104X92[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X93[4X[25Xgap>[125X [27Xrand := RandomMatrix( S^1 + S^2, S^2 + S^3 + S^4 );[127X[104X94[4X[28X<A 2 x 3 matrix over a graded ring>[128X[104X95[4X[25Xgap>[125X [27X#Display( rand );[127X[104X96[4X[25Xgap>[125X [27X#-3*a-b, -1, [127X[104X97[4X[25Xgap>[125X [27X#-a^2+a*b+2*b^2-2*a*c+2*b*c+c^2, -a+c, [127X[104X98[4X[25Xgap>[125X [27X#-2*a^3+5*a^2*b-3*b^3+3*a*b*c+3*b^2*c+2*a*c^2+2*b*c^2+c^3,-3*b^2-2*a*c-2*b*c+c^2[127X[104X99[4X[32X[104X100101[1X5.6-3 GeneratorsOfHomogeneousPart[101X102103[29X[2XGeneratorsOfHomogeneousPart[102X( [3Xd[103X, [3XM[103X ) [32X operation104[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X matrix[133X105106[33X[0;0YThe resulting [5Xhomalg[105X matrix consists of a generating set (over [22XR[122X) of the107[3Xd[103X-th homogeneous part of the finitely generated [5Xhomalg[105X [22XS[122X-module [3XM[103X, where [22XR[122X108is the coefficients ring of the graded ring [22XS[122X with [22XS_0=R[122X.[133X109110[4X[32X Example [32X[104X111[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X112[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X113[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X114[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X115[4X[28X<A graded non-torsion left module presented by 2 relations for 3 generators>[128X[104X116[4X[25Xgap>[125X [27Xm := GeneratorsOfHomogeneousPart( 1, M );[127X[104X117[4X[28X<An unevaluated non-zero 7 x 3 matrix over a graded ring>[128X[104X118[4X[25Xgap>[125X [27XDisplay( m );[127X[104X119[4X[28Xx^2,0,0,[128X[104X120[4X[28Xx*y,0,0,[128X[104X121[4X[28Xy^2,0,0,[128X[104X122[4X[28X0, x,0,[128X[104X123[4X[28X0, y,0,[128X[104X124[4X[28X0, z,0,[128X[104X125[4X[28X0, 0,1 [128X[104X126[4X[28X(over a graded ring)[128X[104X127[4X[32X[104X128129[33X[0;0YCompare with [2XMonomialMap[102X ([14X5.6-1[114X).[133X130131[1X5.6-4 SubmoduleGeneratedByHomogeneousPart[101X132133[29X[2XSubmoduleGeneratedByHomogeneousPart[102X( [3Xd[103X, [3XM[103X ) [32X operation134[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X module[133X135136[33X[0;0YThe submodule of the [5Xhomalg[105X module [3XM[103X generated by the image of the [3Xd[103X-th137monomial map (--> [2XMonomialMap[102X ([14X5.6-1[114X)), or equivalently, by the generating138set of the [3Xd[103X-th homogeneous part of [3XM[103X.[133X139140[4X[32X Example [32X[104X141[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X142[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X143[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X144[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X145[4X[28X<A graded non-torsion left module presented by 2 relations for 3 generators>[128X[104X146[4X[25Xgap>[125X [27Xn := SubmoduleGeneratedByHomogeneousPart( 1, M );[127X[104X147[4X[28X<A graded left submodule given by 7 generators>[128X[104X148[4X[25Xgap>[125X [27XDisplay( M );[127X[104X149[4X[28Xz, 0, 0, [128X[104X150[4X[28X0, y^2*z,z^2,[128X[104X151[4X[28Xx^3,y^2, z [128X[104X152[4X[28X[128X[104X153[4X[28XCokernel of the map[128X[104X154[4X[28X[128X[104X155[4X[28XQ[x,y,z]^(1x3) --> Q[x,y,z]^(1x3),[128X[104X156[4X[28X[128X[104X157[4X[28Xcurrently represented by the above matrix[128X[104X158[4X[28X(graded, degrees of generators: [ -1, 0, 1 ])[128X[104X159[4X[25Xgap>[125X [27XDisplay( n );[127X[104X160[4X[28Xx^2,0,0,[128X[104X161[4X[28Xx*y,0,0,[128X[104X162[4X[28Xy^2,0,0,[128X[104X163[4X[28X0, x,0,[128X[104X164[4X[28X0, y,0,[128X[104X165[4X[28X0, z,0,[128X[104X166[4X[28X0, 0,1 [128X[104X167[4X[28X[128X[104X168[4X[28XA left submodule generated by the 7 rows of the above matrix[128X[104X169[4X[28X[128X[104X170[4X[28X(graded, degrees of generators: [ 1, 1, 1, 1, 1, 1, 1 ])[128X[104X171[4X[25Xgap>[125X [27XN := UnderlyingObject( n );[127X[104X172[4X[28X<A graded left module presented by yet unknown relations for 7 generators>[128X[104X173[4X[25Xgap>[125X [27XDisplay( N );[127X[104X174[4X[28Xz, 0, 0,0, 0, 0,0, [128X[104X175[4X[28X0, z, 0,0, 0, 0,0, [128X[104X176[4X[28X0, 0, z,0, 0, 0,0, [128X[104X177[4X[28X0, 0, 0,0, -z, y,0, [128X[104X178[4X[28Xx, 0, 0,0, y, 0,z, [128X[104X179[4X[28X-y,x, 0,0, 0, 0,0, [128X[104X180[4X[28X0, -y,x,0, 0, 0,0, [128X[104X181[4X[28X0, 0, 0,-y, x, 0,0, [128X[104X182[4X[28X0, 0, 0,-z, 0, x,0, [128X[104X183[4X[28X0, 0, 0,0, y*z,0,z^2, [128X[104X184[4X[28X0, 0, 0,y^2*z,0, 0,x*z^2[128X[104X185[4X[28X[128X[104X186[4X[28XCokernel of the map[128X[104X187[4X[28X[128X[104X188[4X[28XQ[x,y,z]^(1x11) --> Q[x,y,z]^(1x7),[128X[104X189[4X[28X[128X[104X190[4X[28Xcurrently represented by the above matrix[128X[104X191[4X[28X[128X[104X192[4X[28X(graded, degrees of generators: [ 1, 1, 1, 1, 1, 1, 1 ])[128X[104X193[4X[25Xgap>[125X [27Xgens := GeneratorsOfModule( N );[127X[104X194[4X[28X<A set of 7 generators of a homalg left module>[128X[104X195[4X[25Xgap>[125X [27XDisplay( gens );[127X[104X196[4X[28Xx^2,0,0,[128X[104X197[4X[28Xx*y,0,0,[128X[104X198[4X[28Xy^2,0,0,[128X[104X199[4X[28X0, x,0,[128X[104X200[4X[28X0, y,0,[128X[104X201[4X[28X0, z,0,[128X[104X202[4X[28X0, 0,1 [128X[104X203[4X[28X[128X[104X204[4X[28Xa set of 7 generators given by the rows of the above matrix[128X[104X205[4X[32X[104X206207[1X5.6-5 RepresentationMapOfRingElement[101X208209[29X[2XRepresentationMapOfRingElement[102X( [3Xr[103X, [3XM[103X, [3Xd[103X ) [32X operation210[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X matrix[133X211212[33X[0;0YThe graded map induced by the homogeneous degree [13X[22X1[122X[113X ring element [3Xr[103X (of the213underlying [5Xhomalg[105X graded ring [22XS[122X) regarded as a [22XR[122X-linear map between the [3Xd[103X-th214and the [22X([122X[3Xd[103X[22X+1)[122X-st homogeneous part of the graded finitely generated [5Xhomalg[105X215[22XS[122X-module [22XM[122X, where [22XR[122X is the coefficients ring of the graded ring [22XS[122X with216[22XS_0=R[122X. The generating set of both modules is given by217[2XGeneratorsOfHomogeneousPart[102X ([14X5.6-3[114X). The entries of the matrix presenting218the map lie in the coefficients ring [22XR[122X.[133X219220[4X[32X Example [32X[104X221[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X222[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X223[4X[25Xgap>[125X [27Xx := Indeterminate( S, 1 );[127X[104X224[4X[28Xx[128X[104X225[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X226[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X227[4X[28X<A graded non-torsion left module presented by 2 relations for 3 generators>[128X[104X228[4X[25Xgap>[125X [27Xm := RepresentationMapOfRingElement( x, M, 0 );[127X[104X229[4X[28X<A "homomorphism" of graded left modules>[128X[104X230[4X[25Xgap>[125X [27XDisplay( m );[127X[104X231[4X[28X1,0,0,0,0,0,0,[128X[104X232[4X[28X0,1,0,0,0,0,0,[128X[104X233[4X[28X0,0,0,1,0,0,0 [128X[104X234[4X[28X[128X[104X235[4X[28Xthe graded map is currently represented by the above 3 x 7 matrix[128X[104X236[4X[28X[128X[104X237[4X[28X(degrees of generators of target: [ 1, 1, 1, 1, 1, 1, 1 ])[128X[104X238[4X[32X[104X239240[1X5.6-6 RepresentationMatrixOfKoszulId[101X241242[29X[2XRepresentationMatrixOfKoszulId[102X( [3Xd[103X, [3XM[103X ) [32X operation243[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X matrix[133X244245[33X[0;0YIt is assumed that all indeterminates of the underlying [5Xhomalg[105X graded ring [22XS[122X246are of degree [22X1[122X. The output is the [5Xhomalg[105X matrix of the multiplication map247[22XHom( A, M_[3Xd[103X ) -> Hom( A, M_[3Xd[103X+1 )[122X, where [22XA[122X is the Koszul dual ring of [22XS[122X,248defined using the operation [10XKoszulDualRing[110X.[133X249250[4X[32X Example [32X[104X251[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X252[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X253[4X[25Xgap>[125X [27XA := KoszulDualRing( S, "a,b,c" );;[127X[104X254[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X255[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X256[4X[28X<A graded non-torsion left module presented by 2 relations for 3 generators>[128X[104X257[4X[25Xgap>[125X [27Xm := RepresentationMatrixOfKoszulId( 0, M );[127X[104X258[4X[28X<An unevaluated 3 x 7 matrix over a graded ring>[128X[104X259[4X[25Xgap>[125X [27XDisplay( m );[127X[104X260[4X[28Xa,b,0,0,0,0,0,[128X[104X261[4X[28X0,a,b,0,0,0,0,[128X[104X262[4X[28X0,0,0,a,b,c,0 [128X[104X263[4X[28X(over a graded ring)[128X[104X264[4X[32X[104X265266[1X5.6-7 RepresentationMapOfKoszulId[101X267268[29X[2XRepresentationMapOfKoszulId[102X( [3Xd[103X, [3XM[103X ) [32X operation269[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X map[133X270271[33X[0;0YIt is assumed that all indeterminates of the underlying [5Xhomalg[105X graded ring [22XS[122X272are of degree [22X1[122X. The output is the the multiplication map [22XHom( A, M_[3Xd[103X ) ->273Hom( A, M_[3Xd[103X+1 )[122X, where [22XA[122X is the Koszul dual ring of [22XS[122X, defined using the274operation [10XKoszulDualRing[110X.[133X275276[4X[32X Example [32X[104X277[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X278[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X279[4X[25Xgap>[125X [27XA := KoszulDualRing( S, "a,b,c" );;[127X[104X280[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X281[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );[127X[104X282[4X[28X<A graded non-torsion left module presented by 2 relations for 3 generators>[128X[104X283[4X[25Xgap>[125X [27Xm := RepresentationMapOfKoszulId( 0, M );[127X[104X284[4X[28X<A homomorphism of graded left modules>[128X[104X285[4X[25Xgap>[125X [27XDisplay( m );[127X[104X286[4X[28Xa,b,0,0,0,0,0,[128X[104X287[4X[28X0,a,b,0,0,0,0,[128X[104X288[4X[28X0,0,0,a,b,c,0 [128X[104X289[4X[28X[128X[104X290[4X[28Xthe graded map is currently represented by the above 3 x 7 matrix[128X[104X291[4X[28X[128X[104X292[4X[28X(degrees of generators of target: [ 4, 4, 4, 4, 4, 4, 4 ])[128X[104X293[4X[32X[104X294295[1X5.6-8 KoszulRightAdjoint[101X296297[29X[2XKoszulRightAdjoint[102X( [3XM[103X, [3Xdegree_lowest[103X, [3Xdegree_highest[103X ) [32X operation298[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X cocomplex[133X299300[33X[0;0YIt is assumed that all indeterminates of the underlying [5Xhomalg[105X graded ring [22XS[122X301are of degree [22X1[122X. Compute the [5Xhomalg[105X [22XA[122X-cocomplex [22XC[122X of Koszul maps of the302[5Xhomalg[105X [22XS[122X-module [3XM[103X (--> [2XRepresentationMapOfKoszulId[102X ([14X5.6-7[114X)) in the [22X[[122X303[3Xdegree_lowest[103X .. [3Xdegree_highest[103X [22X][122X. The Castelnuovo-Mumford regularity of [3XM[103X304is characterized as the highest degree [22Xd[122X, such that [22XC[122X is not exact at [22Xd[122X. [22XA[122X305is the Koszul dual ring of [22XS[122X, defined using the operation [10XKoszulDualRing[110X.[133X306307[4X[32X Example [32X[104X308[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X309[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X310[4X[25Xgap>[125X [27XA := KoszulDualRing( S, "a,b,c" );;[127X[104X311[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;[127X[104X312[4X[25Xgap>[125X [27XM := LeftPresentationWithDegrees( M, [ -1, 0, 1 ], S );[127X[104X313[4X[28X<A graded non-torsion left module presented by 2 relations for 3 generators>[128X[104X314[4X[25Xgap>[125X [27XCastelnuovoMumfordRegularity( M );[127X[104X315[4X[28X1[128X[104X316[4X[25Xgap>[125X [27XR := KoszulRightAdjoint( M, -5, 5 );[127X[104X317[4X[28X<A cocomplex containing 10 morphisms of graded left modules at degrees[128X[104X318[4X[28X[ -5 .. 5 ]>[128X[104X319[4X[25Xgap>[125X [27XR := KoszulRightAdjoint( M, 1, 5 );[127X[104X320[4X[28X<An acyclic cocomplex containing[128X[104X321[4X[28X4 morphisms of graded left modules at degrees [ 1 .. 5 ]>[128X[104X322[4X[25Xgap>[125X [27XR := KoszulRightAdjoint( M, 0, 5 );[127X[104X323[4X[28X<A cocomplex containing 5 morphisms of graded left modules at degrees[128X[104X324[4X[28X[ 0 .. 5 ]>[128X[104X325[4X[25Xgap>[125X [27XR := KoszulRightAdjoint( M, -5, 5 );[127X[104X326[4X[28X<A cocomplex containing 10 morphisms of graded left modules at degrees[128X[104X327[4X[28X[ -5 .. 5 ]>[128X[104X328[4X[25Xgap>[125X [27XH := Cohomology( R );[127X[104X329[4X[28X<A graded cohomology object consisting of 11 graded left modules at degrees [128X[104X330[4X[28X[ -5 .. 5 ]>[128X[104X331[4X[25Xgap>[125X [27XByASmallerPresentation( H );[127X[104X332[4X[28X<A non-zero graded cohomology object consisting of[128X[104X333[4X[28X11 graded left modules at degrees [ -5 .. 5 ]>[128X[104X334[4X[25Xgap>[125X [27XCohomology( R, -2 );[127X[104X335[4X[28X<A graded zero left module>[128X[104X336[4X[25Xgap>[125X [27XCohomology( R, -3 );[127X[104X337[4X[28X<A graded zero left module>[128X[104X338[4X[25Xgap>[125X [27XCohomology( R, -1 );[127X[104X339[4X[28X<A graded cyclic torsion-free non-free left module presented by 2 relations fo\[128X[104X340[4X[28Xr a cyclic generator>[128X[104X341[4X[25Xgap>[125X [27XCohomology( R, 0 );[127X[104X342[4X[28X<A graded non-zero cyclic left module presented by 3 relations for a cyclic ge\[128X[104X343[4X[28Xnerator>[128X[104X344[4X[25Xgap>[125X [27XCohomology( R, 1 );[127X[104X345[4X[28X<A graded non-zero cyclic left module presented by 2 relations for a cyclic ge\[128X[104X346[4X[28Xnerator>[128X[104X347[4X[25Xgap>[125X [27XCohomology( R, 2 );[127X[104X348[4X[28X<A graded zero left module>[128X[104X349[4X[25Xgap>[125X [27XCohomology( R, 3 );[127X[104X350[4X[28X<A graded zero left module>[128X[104X351[4X[25Xgap>[125X [27XCohomology( R, 4 );[127X[104X352[4X[28X<A graded zero left module>[128X[104X353[4X[25Xgap>[125X [27XDisplay( Cohomology( R, -1 ) );[127X[104X354[4X[28XQ{a,b,c}/< b, a >[128X[104X355[4X[28X[128X[104X356[4X[28X(graded, degree of generator: 0)[128X[104X357[4X[25Xgap>[125X [27XDisplay( Cohomology( R, 0 ) );[127X[104X358[4X[28XQ{a,b,c}/< c, b, a >[128X[104X359[4X[28X[128X[104X360[4X[28X(graded, degree of generator: 0)[128X[104X361[4X[25Xgap>[125X [27XDisplay( Cohomology( R, 1 ) );[127X[104X362[4X[28XQ{a,b,c}/< b, a >[128X[104X363[4X[28X[128X[104X364[4X[28X(graded, degree of generator: 2)[128X[104X365[4X[32X[104X366367[1X5.6-9 HomogeneousPartOverCoefficientsRing[101X368369[29X[2XHomogeneousPartOverCoefficientsRing[102X( [3Xd[103X, [3XM[103X ) [32X operation370[6XReturns:[106X [33X[0;10Ya [5Xhomalg[105X module[133X371372[33X[0;0YThe degree [22Xd[122X homogeneous part of the graded [22XR[122X-module [3XM[103X as a module over the373coefficient ring or field of [22XR[122X.[133X374375[4X[32X Example [32X[104X376[4X[25Xgap>[125X [27XR := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;[127X[104X377[4X[25Xgap>[125X [27XS := GradedRing( R );;[127X[104X378[4X[25Xgap>[125X [27XM := HomalgMatrix( "[ x, y^2, z^3 ]", 3, 1, S );;[127X[104X379[4X[25Xgap>[125X [27XM := Subobject( M, ( 1 * S )^0 );[127X[104X380[4X[28X<A graded torsion-free (left) ideal given by 3 generators>[128X[104X381[4X[25Xgap>[125X [27XCastelnuovoMumfordRegularity( M );[127X[104X382[4X[28X4[128X[104X383[4X[25Xgap>[125X [27XM1 := HomogeneousPartOverCoefficientsRing( 1, M );[127X[104X384[4X[28X<A graded left vector space of dimension 1 on a free generator>[128X[104X385[4X[25Xgap>[125X [27Xgen1 := GeneratorsOfModule( M1 );[127X[104X386[4X[28X<A set consisting of a single generator of a homalg left module>[128X[104X387[4X[25Xgap>[125X [27XDisplay( M1 );[127X[104X388[4X[28XQ^(1 x 1)[128X[104X389[4X[28X[128X[104X390[4X[28X(graded, degree of generator: 1)[128X[104X391[4X[25Xgap>[125X [27XM2 := HomogeneousPartOverCoefficientsRing( 2, M );[127X[104X392[4X[28X<A graded left vector space of dimension 4 on free generators>[128X[104X393[4X[25Xgap>[125X [27XDisplay( M2 );[127X[104X394[4X[28XQ^(1 x 4)[128X[104X395[4X[28X[128X[104X396[4X[28X(graded, degrees of generators: [ 2, 2, 2, 2 ])[128X[104X397[4X[25Xgap>[125X [27Xgen2 := GeneratorsOfModule( M2 );[127X[104X398[4X[28X<A set of 4 generators of a homalg left module>[128X[104X399[4X[25Xgap>[125X [27XM3 := HomogeneousPartOverCoefficientsRing( 3, M );[127X[104X400[4X[28X<A graded left vector space of dimension 9 on free generators>[128X[104X401[4X[25Xgap>[125X [27XDisplay( M3 );[127X[104X402[4X[28XQ^(1 x 9)[128X[104X403[4X[28X[128X[104X404[4X[28X(graded, degrees of generators: [ 3, 3, 3, 3, 3, 3, 3, 3, 3 ])[128X[104X405[4X[25Xgap>[125X [27Xgen3 := GeneratorsOfModule( M3 );[127X[104X406[4X[28X<A set of 9 generators of a homalg left module>[128X[104X407[4X[25Xgap>[125X [27XDisplay( gen1 );[127X[104X408[4X[28Xx[128X[104X409[4X[28X[128X[104X410[4X[28Xa set consisting of a single generator given by (the row of) the above matrix[128X[104X411[4X[25Xgap>[125X [27XDisplay( gen2 );[127X[104X412[4X[28Xx^2,[128X[104X413[4X[28Xx*y,[128X[104X414[4X[28Xx*z,[128X[104X415[4X[28Xy^2 [128X[104X416[4X[28X[128X[104X417[4X[28Xa set of 4 generators given by the rows of the above matrix[128X[104X418[4X[25Xgap>[125X [27XDisplay( gen3 );[127X[104X419[4X[28Xx^3, [128X[104X420[4X[28Xx^2*y,[128X[104X421[4X[28Xx^2*z,[128X[104X422[4X[28Xx*y*z,[128X[104X423[4X[28Xx*z^2,[128X[104X424[4X[28Xx*y^2,[128X[104X425[4X[28Xy^3, [128X[104X426[4X[28Xy^2*z,[128X[104X427[4X[28Xz^3 [128X[104X428[4X[28X[128X[104X429[4X[28Xa set of 9 generators given by the rows of the above matrix[128X[104X430[4X[32X[104X431432433434