Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

GAP 4.8.9 installation with standard packages -- copy to your CoCalc project to get it

563574 views
1
2
5 GradedModules
3
4
5
5.1 GradedModules: Category and Representations
6
7
8
5.2 GradedModules: Constructors
9
10
11
5.3 GradedModules: Properties
12
13
For more properties see the corresponding section 'Modules: Modules:
14
Properties') in the documentation of the homalg package.
15
16
17
5.4 GradedModules: Attributes
18
19
5.4-1 BettiTable
20
21
BettiTable( M )  attribute
22
Returns: a homalg diagram
23
24
The Betti diagram of the homalg graded module M.
25
26
5.4-2 CastelnuovoMumfordRegularity
27
28
CastelnuovoMumfordRegularity( M )  attribute
29
Returns: an integer
30
31
The Castelnuovo-Mumford regularity of the homalg graded module M.
32
33
5.4-3 CastelnuovoMumfordRegularityOfSheafification
34
35
CastelnuovoMumfordRegularityOfSheafification( M )  attribute
36
Returns: an integer
37
38
The Castelnuovo-Mumford regularity of the sheafification of homalg graded
39
module M.
40
41
For more attributes see the corresponding section 'Modules: Modules:
42
Attributes') in the documentation of the homalg package.
43
44
45
5.5 LISHV: Logical Implications for GradedModules
46
47
48
5.6 GradedModules: Operations and Functions
49
50
5.6-1 MonomialMap
51
52
MonomialMap( d, M )  operation
53
Returns: a homalg map
54
55
The map from a free graded module onto all degree d monomial generators of
56
the finitely generated homalg module M.
57
58
 Example 
59
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;
60
gap> S := GradedRing( R );;
61
gap> M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;
62
gap> M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );
63
<A graded non-torsion left module presented by 2 relations for 3 generators>
64
gap> m := MonomialMap( 1, M );
65
<A homomorphism of graded left modules>
66
gap> Display( m );
67
x^2,0,0,
68
x*y,0,0,
69
x*z,0,0,
70
y^2,0,0,
71
y*z,0,0,
72
z^2,0,0,
73
0, x,0,
74
0, y,0,
75
0, z,0,
76
0, 0,1 
77

78
the graded map is currently represented by the above 10 x 3 matrix
79

80
(degrees of generators of target: [ -1, 0, 1 ])
81

82
83
5.6-2 RandomMatrix
84
85
RandomMatrix( S, T )  operation
86
Returns: a homalg matrix
87
88
A random matrix between the graded source module S and the graded target
89
module T.
90
91
 Example 
92
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "a,b,c";;
93
gap> S := GradedRing( R );;
94
gap> rand := RandomMatrix( S^1 + S^2, S^2 + S^3 + S^4 );
95
<A 2 x 3 matrix over a graded ring>
96
gap> #Display( rand );
97
gap> #-3*a-b, -1, 
98
gap> #-a^2+a*b+2*b^2-2*a*c+2*b*c+c^2, -a+c, 
99
gap> #-2*a^3+5*a^2*b-3*b^3+3*a*b*c+3*b^2*c+2*a*c^2+2*b*c^2+c^3,-3*b^2-2*a*c-2*b*c+c^2
100

101
102
5.6-3 GeneratorsOfHomogeneousPart
103
104
GeneratorsOfHomogeneousPart( d, M )  operation
105
Returns: a homalg matrix
106
107
The resulting homalg matrix consists of a generating set (over R) of the
108
d-th homogeneous part of the finitely generated homalg S-module M, where R
109
is the coefficients ring of the graded ring S with S_0=R.
110
111
 Example 
112
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;
113
gap> S := GradedRing( R );;
114
gap> M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;
115
gap> M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );
116
<A graded non-torsion left module presented by 2 relations for 3 generators>
117
gap> m := GeneratorsOfHomogeneousPart( 1, M );
118
<An unevaluated non-zero 7 x 3 matrix over a graded ring>
119
gap> Display( m );
120
x^2,0,0,
121
x*y,0,0,
122
y^2,0,0,
123
0, x,0,
124
0, y,0,
125
0, z,0,
126
0, 0,1 
127
(over a graded ring)
128

129
130
Compare with MonomialMap (5.6-1).
131
132
5.6-4 SubmoduleGeneratedByHomogeneousPart
133
134
SubmoduleGeneratedByHomogeneousPart( d, M )  operation
135
Returns: a homalg module
136
137
The submodule of the homalg module M generated by the image of the d-th
138
monomial map (--> MonomialMap (5.6-1)), or equivalently, by the generating
139
set of the d-th homogeneous part of M.
140
141
 Example 
142
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;
143
gap> S := GradedRing( R );;
144
gap> M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;
145
gap> M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );
146
<A graded non-torsion left module presented by 2 relations for 3 generators>
147
gap> n := SubmoduleGeneratedByHomogeneousPart( 1, M );
148
<A graded left submodule given by 7 generators>
149
gap> Display( M );
150
z, 0, 0, 
151
0, y^2*z,z^2,
152
x^3,y^2, z 
153

154
Cokernel of the map
155

156
Q[x,y,z]^(1x3) --> Q[x,y,z]^(1x3),
157

158
currently represented by the above matrix
159
(graded, degrees of generators: [ -1, 0, 1 ])
160
gap> Display( n );
161
x^2,0,0,
162
x*y,0,0,
163
y^2,0,0,
164
0, x,0,
165
0, y,0,
166
0, z,0,
167
0, 0,1 
168

169
A left submodule generated by the 7 rows of the above matrix
170

171
(graded, degrees of generators: [ 1, 1, 1, 1, 1, 1, 1 ])
172
gap> N := UnderlyingObject( n );
173
<A graded left module presented by yet unknown relations for 7 generators>
174
gap> Display( N );
175
z, 0, 0,0, 0, 0,0, 
176
0, z, 0,0, 0, 0,0, 
177
0, 0, z,0, 0, 0,0, 
178
0, 0, 0,0, -z, y,0, 
179
x, 0, 0,0, y, 0,z, 
180
-y,x, 0,0, 0, 0,0, 
181
0, -y,x,0, 0, 0,0, 
182
0, 0, 0,-y, x, 0,0, 
183
0, 0, 0,-z, 0, x,0, 
184
0, 0, 0,0, y*z,0,z^2, 
185
0, 0, 0,y^2*z,0, 0,x*z^2
186

187
Cokernel of the map
188

189
Q[x,y,z]^(1x11) --> Q[x,y,z]^(1x7),
190

191
currently represented by the above matrix
192

193
(graded, degrees of generators: [ 1, 1, 1, 1, 1, 1, 1 ])
194
gap> gens := GeneratorsOfModule( N );
195
<A set of 7 generators of a homalg left module>
196
gap> Display( gens );
197
x^2,0,0,
198
x*y,0,0,
199
y^2,0,0,
200
0, x,0,
201
0, y,0,
202
0, z,0,
203
0, 0,1 
204

205
a set of 7 generators given by the rows of the above matrix
206

207
208
5.6-5 RepresentationMapOfRingElement
209
210
RepresentationMapOfRingElement( r, M, d )  operation
211
Returns: a homalg matrix
212
213
The graded map induced by the homogeneous degree 1 ring element r (of the
214
underlying homalg graded ring S) regarded as a R-linear map between the d-th
215
and the (d+1)-st homogeneous part of the graded finitely generated homalg
216
S-module M, where R is the coefficients ring of the graded ring S with
217
S_0=R. The generating set of both modules is given by
218
GeneratorsOfHomogeneousPart (5.6-3). The entries of the matrix presenting
219
the map lie in the coefficients ring R.
220
221
 Example 
222
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;
223
gap> S := GradedRing( R );;
224
gap> x := Indeterminate( S, 1 );
225
x
226
gap> M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;
227
gap> M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );
228
<A graded non-torsion left module presented by 2 relations for 3 generators>
229
gap> m := RepresentationMapOfRingElement( x, M, 0 );
230
<A "homomorphism" of graded left modules>
231
gap> Display( m );
232
1,0,0,0,0,0,0,
233
0,1,0,0,0,0,0,
234
0,0,0,1,0,0,0 
235

236
the graded map is currently represented by the above 3 x 7 matrix
237

238
(degrees of generators of target: [ 1, 1, 1, 1, 1, 1, 1 ])
239

240
241
5.6-6 RepresentationMatrixOfKoszulId
242
243
RepresentationMatrixOfKoszulId( d, M )  operation
244
Returns: a homalg matrix
245
246
It is assumed that all indeterminates of the underlying homalg graded ring S
247
are of degree 1. The output is the homalg matrix of the multiplication map
248
Hom( A, M_d ) -> Hom( A, M_d+1 ), where A is the Koszul dual ring of S,
249
defined using the operation KoszulDualRing.
250
251
 Example 
252
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;
253
gap> S := GradedRing( R );;
254
gap> A := KoszulDualRing( S, "a,b,c" );;
255
gap> M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;
256
gap> M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );
257
<A graded non-torsion left module presented by 2 relations for 3 generators>
258
gap> m := RepresentationMatrixOfKoszulId( 0, M );
259
<An unevaluated 3 x 7 matrix over a graded ring>
260
gap> Display( m );
261
a,b,0,0,0,0,0,
262
0,a,b,0,0,0,0,
263
0,0,0,a,b,c,0 
264
(over a graded ring)
265

266
267
5.6-7 RepresentationMapOfKoszulId
268
269
RepresentationMapOfKoszulId( d, M )  operation
270
Returns: a homalg map
271
272
It is assumed that all indeterminates of the underlying homalg graded ring S
273
are of degree 1. The output is the the multiplication map Hom( A, M_d ) ->
274
Hom( A, M_d+1 ), where A is the Koszul dual ring of S, defined using the
275
operation KoszulDualRing.
276
277
 Example 
278
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;
279
gap> S := GradedRing( R );;
280
gap> A := KoszulDualRing( S, "a,b,c" );;
281
gap> M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;
282
gap> M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ] );
283
<A graded non-torsion left module presented by 2 relations for 3 generators>
284
gap> m := RepresentationMapOfKoszulId( 0, M );
285
<A homomorphism of graded left modules>
286
gap> Display( m );
287
a,b,0,0,0,0,0,
288
0,a,b,0,0,0,0,
289
0,0,0,a,b,c,0 
290

291
the graded map is currently represented by the above 3 x 7 matrix
292

293
(degrees of generators of target: [ 4, 4, 4, 4, 4, 4, 4 ])
294

295
296
5.6-8 KoszulRightAdjoint
297
298
KoszulRightAdjoint( M, degree_lowest, degree_highest )  operation
299
Returns: a homalg cocomplex
300
301
It is assumed that all indeterminates of the underlying homalg graded ring S
302
are of degree 1. Compute the homalg A-cocomplex C of Koszul maps of the
303
homalg S-module M (--> RepresentationMapOfKoszulId (5.6-7)) in the [
304
degree_lowest .. degree_highest ]. The Castelnuovo-Mumford regularity of M
305
is characterized as the highest degree d, such that C is not exact at d. A
306
is the Koszul dual ring of S, defined using the operation KoszulDualRing.
307
308
 Example 
309
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;
310
gap> S := GradedRing( R );;
311
gap> A := KoszulDualRing( S, "a,b,c" );;
312
gap> M := HomalgMatrix( "[ x^3, y^2, z, z, 0, 0 ]", 2, 3, S );;
313
gap> M := LeftPresentationWithDegrees( M, [ -1, 0, 1 ], S );
314
<A graded non-torsion left module presented by 2 relations for 3 generators>
315
gap> CastelnuovoMumfordRegularity( M );
316
1
317
gap> R := KoszulRightAdjoint( M, -5, 5 );
318
<A cocomplex containing 10 morphisms of graded left modules at degrees
319
[ -5 .. 5 ]>
320
gap> R := KoszulRightAdjoint( M, 1, 5 );
321
<An acyclic cocomplex containing
322
4 morphisms of graded left modules at degrees [ 1 .. 5 ]>
323
gap> R := KoszulRightAdjoint( M, 0, 5 );
324
<A cocomplex containing 5 morphisms of graded left modules at degrees
325
[ 0 .. 5 ]>
326
gap> R := KoszulRightAdjoint( M, -5, 5 );
327
<A cocomplex containing 10 morphisms of graded left modules at degrees
328
[ -5 .. 5 ]>
329
gap> H := Cohomology( R );
330
<A graded cohomology object consisting of 11 graded left modules at degrees 
331
[ -5 .. 5 ]>
332
gap> ByASmallerPresentation( H );
333
<A non-zero graded cohomology object consisting of
334
11 graded left modules at degrees [ -5 .. 5 ]>
335
gap> Cohomology( R, -2 );
336
<A graded zero left module>
337
gap> Cohomology( R, -3 );
338
<A graded zero left module>
339
gap> Cohomology( R, -1 );
340
<A graded cyclic torsion-free non-free left module presented by 2 relations fo\
341
r a cyclic generator>
342
gap> Cohomology( R, 0 );
343
<A graded non-zero cyclic left module presented by 3 relations for a cyclic ge\
344
nerator>
345
gap> Cohomology( R, 1 );
346
<A graded non-zero cyclic left module presented by 2 relations for a cyclic ge\
347
nerator>
348
gap> Cohomology( R, 2 );
349
<A graded zero left module>
350
gap> Cohomology( R, 3 );
351
<A graded zero left module>
352
gap> Cohomology( R, 4 );
353
<A graded zero left module>
354
gap> Display( Cohomology( R, -1 ) );
355
Q{a,b,c}/< b, a >
356

357
(graded, degree of generator: 0)
358
gap> Display( Cohomology( R, 0 ) );
359
Q{a,b,c}/< c, b, a >
360

361
(graded, degree of generator: 0)
362
gap> Display( Cohomology( R, 1 ) );
363
Q{a,b,c}/< b, a >
364

365
(graded, degree of generator: 2)
366

367
368
5.6-9 HomogeneousPartOverCoefficientsRing
369
370
HomogeneousPartOverCoefficientsRing( d, M )  operation
371
Returns: a homalg module
372
373
The degree d homogeneous part of the graded R-module M as a module over the
374
coefficient ring or field of R.
375
376
 Example 
377
gap> R := HomalgFieldOfRationalsInDefaultCAS( ) * "x,y,z";;
378
gap> S := GradedRing( R );;
379
gap> M := HomalgMatrix( "[ x, y^2, z^3 ]", 3, 1, S );;
380
gap> M := Subobject( M, ( 1 * S )^0 );
381
<A graded torsion-free (left) ideal given by 3 generators>
382
gap> CastelnuovoMumfordRegularity( M );
383
4
384
gap> M1 := HomogeneousPartOverCoefficientsRing( 1, M );
385
<A graded left vector space of dimension 1 on a free generator>
386
gap> gen1 := GeneratorsOfModule( M1 );
387
<A set consisting of a single generator of a homalg left module>
388
gap> Display( M1 );
389
Q^(1 x 1)
390

391
(graded, degree of generator: 1)
392
gap> M2 := HomogeneousPartOverCoefficientsRing( 2, M );
393
<A graded left vector space of dimension 4 on free generators>
394
gap> Display( M2 );
395
Q^(1 x 4)
396

397
(graded, degrees of generators: [ 2, 2, 2, 2 ])
398
gap> gen2 := GeneratorsOfModule( M2 );
399
<A set of 4 generators of a homalg left module>
400
gap> M3 := HomogeneousPartOverCoefficientsRing( 3, M );
401
<A graded left vector space of dimension 9 on free generators>
402
gap> Display( M3 );
403
Q^(1 x 9)
404

405
(graded, degrees of generators: [ 3, 3, 3, 3, 3, 3, 3, 3, 3 ])
406
gap> gen3 := GeneratorsOfModule( M3 );
407
<A set of 9 generators of a homalg left module>
408
gap> Display( gen1 );
409
x
410

411
a set consisting of a single generator given by (the row of) the above matrix
412
gap> Display( gen2 );
413
x^2,
414
x*y,
415
x*z,
416
y^2 
417

418
a set of 4 generators given by the rows of the above matrix
419
gap> Display( gen3 );
420
x^3, 
421
x^2*y,
422
x^2*z,
423
x*y*z,
424
x*z^2,
425
x*y^2,
426
y^3, 
427
y^2*z,
428
z^3 
429

430
a set of 9 generators given by the rows of the above matrix
431

432
433
434