Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section16.6Exercises

ΒΆ
1

Which of the following sets are rings with respect to the usual operations of addition and multiplication? If the set is a ring, is it also a field?

  1. 7Z7 {\mathbb Z}

  2. Z18{\mathbb Z}_{18}

  3. Q(2 )={a+b2:a,b∈Q}{\mathbb Q} ( \sqrt{2}\, ) = \{a + b \sqrt{2} : a, b \in {\mathbb Q}\}

  4. Q(2,3 )={a+b2+c3+d6:a,b,c,d∈Q}{\mathbb Q} ( \sqrt{2}, \sqrt{3}\, ) = \{a + b \sqrt{2} + c \sqrt{3} + d \sqrt{6} : a, b, c, d \in {\mathbb Q}\}

  5. Z[3 ]={a+b3:a,b∈Z}{\mathbb Z}[\sqrt{3}\, ] = \{ a + b \sqrt{3} : a, b \in {\mathbb Z} \}

  6. R={a+b33:a,b∈Q}R = \{a + b \sqrt[3]{3} : a, b \in {\mathbb Q} \}

  7. Z[i]={a+bi:a,b∈ZΒ andΒ i2=βˆ’1}{\mathbb Z}[ i ] = \{ a + b i : a, b \in {\mathbb Z} \text{ and } i^2 = -1 \}

  8. Q(33 )={a+b33+c93:a,b,c∈Q}{\mathbb Q}( \sqrt[3]{3}\, ) = \{ a + b \sqrt[3]{3} + c \sqrt[3]{9} : a, b, c \in {\mathbb Q} \}

Hint

(a) 7Z7 {\mathbb Z} is a ring but not a field; (c) Q(2 ){\mathbb Q}(\sqrt{2}\, ) is a field; (f) RR is not a ring.

2

Let RR be the ring of 2Γ—22 \times 2 matrices of the form

(ab00),\begin{equation*} \begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}, \end{equation*}

where a,b∈R.a, b \in {\mathbb R}\text{.} Show that although RR is a ring that has no identity, we can find a subring SS of RR with an identity.

3

List or characterize all of the units in each of the following rings.

  1. Z10{\mathbb Z}_{10}

  2. Z12{\mathbb Z}_{12}

  3. Z7{\mathbb Z}_{7}

  4. M2(Z),{\mathbb M}_2( {\mathbb Z} )\text{,} the 2Γ—22 \times 2 matrices with entries in Z{\mathbb Z}

  5. M2(Z2),{\mathbb M}_2( {\mathbb Z}_2 )\text{,} the 2Γ—22 \times 2 matrices with entries in Z2{\mathbb Z}_2

Hint

(a) {1,3,7,9};\{1, 3, 7, 9 \}\text{;} (c) {1,2,3,4,5,6};\{ 1, 2, 3, 4, 5, 6 \}\text{;} (e)

{(1001),(1101),(1011),(0110),(1110),(0111),}.\begin{equation*} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \right\}. \end{equation*}
4

Find all of the ideals in each of the following rings. Which of these ideals are maximal and which are prime?

  1. Z18{\mathbb Z}_{18}

  2. Z25{\mathbb Z}_{25}

  3. M2(R),{\mathbb M}_2( {\mathbb R} )\text{,} the 2Γ—22 \times 2 matrices with entries in R{\mathbb R}

  4. M2(Z),{\mathbb M}_2( {\mathbb Z} )\text{,} the 2Γ—22 \times 2 matrices with entries in Z{\mathbb Z}

  5. Q{\mathbb Q}

Hint

(a) {0},\{0 \}\text{,} {0,9},\{0, 9 \}\text{,} {0,6,12},\{0, 6, 12 \}\text{,} {0,3,6,9,12,15},\{0, 3, 6, 9, 12, 15 \}\text{,} {0,2,4,6,8,10,12,14,16};\{0, 2, 4, 6, 8, 10, 12, 14, 16 \}\text{;} (c) there are no nontrivial ideals.

5

For each of the following rings RR with ideal I,I\text{,} give an addition table and a multiplication table for R/I.R/I\text{.}

  1. R=ZR = {\mathbb Z} and I=6ZI = 6 {\mathbb Z}

  2. R=Z12R = {\mathbb Z}_{12} and I={0,3,6,9}I = \{ 0, 3, 6, 9 \}

6

Find all homomorphisms ϕ:Z/6Z→Z/15Z.\phi : {\mathbb Z} / 6 {\mathbb Z} \rightarrow {\mathbb Z} / 15 {\mathbb Z}\text{.}

7

Prove that R{\mathbb R} is not isomorphic to C.{\mathbb C}\text{.}

Hint

Assume there is an isomorphism ϕ:C→R\phi: {\mathbb C} \rightarrow {\mathbb R} with ϕ(i)=a.\phi(i) = a\text{.}

8

Prove or disprove: The ring Q(2 )={a+b2:a,b∈Q}{\mathbb Q}( \sqrt{2}\, ) = \{ a + b \sqrt{2} : a, b \in {\mathbb Q} \} is isomorphic to the ring Q(3 )={a+b3:a,b∈Q}.{\mathbb Q}( \sqrt{3}\, ) = \{a + b \sqrt{3} : a, b \in {\mathbb Q} \}\text{.}

Hint

False. Assume there is an isomorphism Ο•:Q(2 )β†’Q(3 )\phi: {\mathbb Q}(\sqrt{2}\, ) \rightarrow {\mathbb Q}(\sqrt{3}\, ) such that Ο•(2 )=a.\phi(\sqrt{2}\, ) = a\text{.}

9

What is the characteristic of the field formed by the set of matrices

F={(1001),(1110),(0111),(0000)}\begin{equation*} F = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \end{equation*}

with entries in Z2?{\mathbb Z}_2\text{?}

10

Define a map ϕ:C→M2(R)\phi : {\mathbb C} \rightarrow {\mathbb M}_2 ({\mathbb R}) by

Ο•(a+bi)=(abβˆ’ba).\begin{equation*} \phi( a + bi) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}. \end{equation*}

Show that Ο•\phi is an isomorphism of C{\mathbb C} with its image in M2(R).{\mathbb M}_2 ({\mathbb R})\text{.}

11

Prove that the Gaussian integers, Z[i],{\mathbb Z}[i ]\text{,} are an integral domain.

12

Prove that Z[3 i]={a+b3 i:a,b∈Z}{\mathbb Z}[ \sqrt{3}\, i ] = \{ a + b \sqrt{3}\, i : a, b \in {\mathbb Z} \} is an integral domain.

13

Solve each of the following systems of congruences.

  1. x≑2(mod5)x≑6(mod11)\begin{align*} x & \equiv 2 \pmod{5}\\ x & \equiv 6 \pmod{11} \end{align*}
  2. x≑3(mod7)x≑0(mod8)x≑5(mod15)\begin{align*} x & \equiv 3 \pmod{7}\\ x & \equiv 0 \pmod{8}\\ x & \equiv 5 \pmod{15} \end{align*}
  3. x≑2(mod4)x≑4(mod7)x≑7(mod9)x≑5(mod11)\begin{align*} x & \equiv 2 \pmod{4}\\ x & \equiv 4 \pmod{7}\\ x & \equiv 7 \pmod{9}\\ x & \equiv 5 \pmod{11} \end{align*}
  4. x≑3(mod5)x≑0(mod8)x≑1(mod11)x≑5(mod13)\begin{align*} x & \equiv 3 \pmod{5}\\ x & \equiv 0 \pmod{8}\\ x & \equiv 1 \pmod{11}\\ x & \equiv 5 \pmod{13} \end{align*}
Hint

(a) x≑17(mod55);x \equiv 17 \pmod{55}\text{;} (c) x≑214(mod2772).x \equiv 214 \pmod{2772}\text{.}

14

Use the method of parallel computation outlined in the text to calculate 2234+41212234 + 4121 by dividing the calculation into four separate additions modulo 95, 97, 98, and 99.

15

Explain why the method of parallel computation outlined in the text fails for 2134β‹…15312134 \cdot 1531 if we attempt to break the calculation down into two smaller calculations modulo 98 and 99.

16

If RR is a field, show that the only two ideals of RR are {0}\{ 0 \} and RR itself.

Hint

If Iβ‰ {0},I \neq \{ 0 \}\text{,} show that 1∈I.1 \in I\text{.}

17

Let aa be any element in a ring RR with identity. Show that (βˆ’1)a=βˆ’a.(-1)a = -a\text{.}

18

Let ϕ:R→S\phi : R \rightarrow S be a ring homomorphism. Prove each of the following statements.

  1. If RR is a commutative ring, then Ο•(R)\phi(R) is a commutative ring.

  2. Ο•(0)=0.\phi( 0 ) = 0\text{.}

  3. Let 1R1_R and 1S1_S be the identities for RR and S,S\text{,} respectively. If Ο•\phi is onto, then Ο•(1R)=1S.\phi(1_R) = 1_S\text{.}

  4. If RR is a field and Ο•(R)β‰ 0,\phi(R) \neq 0\text{,} then Ο•(R)\phi(R) is a field.

Hint

(a) Ο•(a)Ο•(b)=Ο•(ab)=Ο•(ba)=Ο•(b)Ο•(a).\phi(a) \phi(b) = \phi(ab) = \phi(ba) = \phi(b) \phi(a)\text{.}

19

Prove that the associative law for multiplication and the distributive laws hold in R/I.R/I\text{.}

20

Prove the Second Isomorphism Theorem for rings: Let II be a subring of a ring RR and JJ an ideal in R.R\text{.} Then I∩JI \cap J is an ideal in II and

I/I∩Jβ‰…I+J/J.\begin{equation*} I / I \cap J \cong I + J /J. \end{equation*}
21

Prove the Third Isomorphism Theorem for rings: Let RR be a ring and II and JJ be ideals of R,R\text{,} where JβŠ‚I.J \subset I\text{.} Then

R/I≅R/JI/J.\begin{equation*} R/I \cong \frac{R/J}{I/J}. \end{equation*}
22

Prove the Correspondence Theorem: Let II be an ideal of a ring R.R\text{.} Then S→S/IS \rightarrow S/I is a one-to-one correspondence between the set of subrings SS containing II and the set of subrings of R/I.R/I\text{.} Furthermore, the ideals of RR correspond to ideals of R/I.R/I\text{.}

23

Let RR be a ring and SS a subset of R.R\text{.} Show that SS is a subring of RR if and only if each of the following conditions is satisfied.

  1. Sβ‰ βˆ….S \neq \emptyset\text{.}

  2. rs∈Srs \in S for all r,s∈S.r, s \in S\text{.}

  3. rβˆ’s∈Sr - s \in S for all r,s∈S.r, s \in S\text{.}

24

Let RR be a ring with a collection of subrings {RΞ±}.\{ R_{\alpha} \}\text{.} Prove that β‹‚RΞ±\bigcap R_{\alpha} is a subring of R.R\text{.} Give an example to show that the union of two subrings is not necessarily a subring.

25

Let {IΞ±}α∈A\{ I_{\alpha} \}_{\alpha \in A} be a collection of ideals in a ring R.R\text{.} Prove that β‹‚Ξ±βˆˆAIΞ±\bigcap_{\alpha \in A} I_{\alpha} is also an ideal in R.R\text{.} Give an example to show that if I1I_1 and I2I_2 are ideals in R,R\text{,} then I1βˆͺI2I_1 \cup I_2 may not be an ideal.

26

Let RR be an integral domain. Show that if the only ideals in RR are {0}\{ 0 \} and RR itself, RR must be a field.

Hint

Let a∈Ra \in R with aβ‰ 0.a \neq 0\text{.} Then the principal ideal generated by aa is R.R\text{.} Thus, there exists a b∈Rb \in R such that ab=1.ab =1\text{.}

27

Let RR be a commutative ring. An element aa in RR is if an=0a^n = 0 for some positive integer n.n\text{.} Show that the set of all nilpotent elements forms an ideal in R.R\text{.}

28

A ring RR is a if for every a∈R,a \in R\text{,} a2=a.a^2 = a\text{.} Show that every Boolean ring is a commutative ring.

Hint

Compute (a+b)2(a+b)^2 and (βˆ’ab)2.(-ab)^2\text{.}

29

Let RR be a ring, where a3=aa^3 =a for all a∈R.a \in R\text{.} Prove that RR must be a commutative ring.

30

Let RR be a ring with identity 1R1_R and SS a subring of RR with identity 1S.1_S\text{.} Prove or disprove that 1R=1S.1_R = 1_S\text{.}

31

If we do not require the identity of a ring to be distinct from 0, we will not have a very interesting mathematical structure. Let RR be a ring such that 1=0.1 = 0\text{.} Prove that R={0}.R = \{ 0 \}\text{.}

32

Let SS be a nonempty subset of a ring R.R\text{.} Prove that there is a subring Rβ€²R' of RR that contains S.S\text{.}

33

Let RR be a ring. Define the of RR to be

Z(R)={a∈R:ar=ra for all r∈R}.\begin{equation*} Z(R) = \{ a \in R : ar = ra \text{ for all } r \in R \}. \end{equation*}

Prove that Z(R)Z(R) is a commutative subring of R.R\text{.}

34

Let pp be prime. Prove that

Z(p)={a/b:a,b∈Z and gcd⁑(b,p)=1}\begin{equation*} {\mathbb Z}_{(p)} = \{ a / b : a, b \in {\mathbb Z} \text{ and } \gcd( b,p) = 1 \} \end{equation*}

is a ring. The ring Z(p){\mathbb Z}_{(p)} is called the p.p\text{.}

Hint

Let a/b,c/d∈Z(p).a/b, c/d \in {\mathbb Z}_{(p)}\text{.} Then a/b+c/d=(ad+bc)/bda/b + c/d = (ad + bc)/bd and (a/b)β‹…(c/d)=(ac)/(bd)(a/b) \cdot (c/d) = (ac)/(bd) are both in Z(p),{\mathbb Z}_{(p)}\text{,} since gcd⁑(bd,p)=1.\gcd(bd,p) = 1\text{.}

35

Prove or disprove: Every finite integral domain is isomorphic to Zp.{\mathbb Z}_p\text{.}

36

Let RR be a ring with identity.

  1. Let uu be a unit in R.R\text{.} Define a map iu:Rβ†’Ri_u : R \rightarrow R by r↦uruβˆ’1.r \mapsto uru^{-1}\text{.} Prove that iui_u is an automorphism of R.R\text{.} Such an automorphism of RR is called an inner automorphism of R.R\text{.} Denote the set of all inner automorphisms of RR by Inn⁑(R).\inn(R)\text{.}

  2. Denote the set of all automorphisms of RR by Aut⁑(R).\aut(R)\text{.} Prove that Inn⁑(R)\inn(R) is a normal subgroup of Aut⁑(R).\aut(R)\text{.}

  3. Let U(R)U(R) be the group of units in R.R\text{.} Prove that the map

    Ο•:U(R)β†’Inn⁑(R)\begin{equation*} \phi : U(R) \rightarrow \inn(R) \end{equation*}

    defined by u↦iuu \mapsto i_u is a homomorphism. Determine the kernel of Ο•.\phi\text{.}

  4. Compute Aut⁑(Z),\aut( {\mathbb Z})\text{,} Inn⁑(Z),\inn( {\mathbb Z})\text{,} and U(Z).U( {\mathbb Z})\text{.}

37

Let RR and SS be arbitrary rings. Show that their Cartesian product is a ring if we define addition and multiplication in RΓ—SR \times S by

  1. (r,s)+(rβ€²,sβ€²)=(r+rβ€²,s+sβ€²)(r, s) + (r', s') = ( r + r', s + s')

  2. (r,s)(rβ€²,sβ€²)=(rrβ€²,ssβ€²)(r, s)(r', s') = ( rr', ss')

38

An element xx in a ring is called an if x2=x.x^2 = x\text{.} Prove that the only idempotents in an integral domain are 00 and 1.1\text{.} Find a ring with a idempotent xx not equal to 0 or 1.

Hint

Suppose that x2=xx^2 = x and x≠0.x \neq 0\text{.} Since RR is an integral domain, x=1.x = 1\text{.} To find a nontrivial idempotent, look in M2(R).{\mathbb M}_2({\mathbb R})\text{.}

39

Let gcd⁑(a,n)=d\gcd(a, n) = d and gcd⁑(b,d)β‰ 1.\gcd(b, d) \neq 1\text{.} Prove that ax≑b(modn)ax \equiv b \pmod{n} does not have a solution.

40The Chinese Remainder Theorem for Rings

Let RR be a ring and II and JJ be ideals in RR such that I+J=R.I+J = R\text{.}

  1. Show that for any rr and ss in R,R\text{,} the system of equations

    x≑r(modI)x≑s(modJ)\begin{align*} x & \equiv r \pmod{I}\\ x & \equiv s \pmod{J} \end{align*}

    has a solution.

  2. In addition, prove that any two solutions of the system are congruent modulo I∩J.I \cap J\text{.}

  3. Let II and JJ be ideals in a ring RR such that I+J=R.I + J = R\text{.} Show that there exists a ring isomorphism

    R/(I∩J)β‰…R/IΓ—R/J.\begin{equation*} R/(I \cap J) \cong R/I \times R/J. \end{equation*}