Proof
(1) ā (2). Let E be a finite algebraic extension of F. Then E is a finite dimensional vector space over F and there exists a basis consisting of elements α1ā,ā¦,αnā in E such that E=F(α1ā,ā¦,αnā). Each αiā is algebraic over F by TheoremĀ 21.15.
(2) ā (3). Suppose that E=F(α1ā,ā¦,αnā), where every αiā is algebraic over F. Then
E=F(α1ā,ā¦,αnā)āF(α1ā,ā¦,αnā1ā)āāÆāF(α1ā)āF,ā
where each field F(α1ā,ā¦,αiā) is algebraic over F(α1ā,ā¦,αiā1ā).
(3) ā (1). Let
E=F(α1ā,ā¦,αnā)āF(α1ā,ā¦,αnā1ā)āāÆāF(α1ā)āF,ā
where each field F(α1ā,ā¦,αiā) is algebraic over F(α1ā,ā¦,αiā1ā). Since
F(α1ā,ā¦,αiā)=F(α1ā,ā¦,αiā1ā)(αiā)ā
is simple extension and αiā is algebraic over F(α1ā,ā¦,αiā1ā), it follows that
[F(α1ā,ā¦,αiā):F(α1ā,ā¦,αiā1ā)]ā
is finite for each i. Therefore, [E:F] is finite.