Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section11.2The Isomorphism Theorems

ΒΆ

Although it is not evident at first, factor groups correspond exactly to homomorphic images, and we can use factor groups to study homomorphisms. We already know that with every group homomorphism Ο•:Gβ†’H\phi: G \rightarrow H we can associate a normal subgroup of G,G\text{,} ker⁑ϕ.\ker \phi\text{.} The converse is also true; that is, every normal subgroup of a group GG gives rise to homomorphism of groups.

Let HH be a normal subgroup of G.G\text{.} Define the or

ϕ:G→G/H\begin{equation*} \phi : G \rightarrow G/H \end{equation*}

by

Ο•(g)=gH.\begin{equation*} \phi(g) = gH. \end{equation*}

This is indeed a homomorphism, since

Ο•(g1g2)=g1g2H=g1Hg2H=Ο•(g1)Ο•(g2).\begin{equation*} \phi( g_1 g_2 ) = g_1 g_2 H = g_1 H g_2 H = \phi( g_1) \phi( g_2 ). \end{equation*}

The kernel of this homomorphism is H.H\text{.} The following theorems describe the relationships between group homomorphisms, normal subgroups, and factor groups.

Theorem11.10First Isomorphism Theorem

If ψ:Gβ†’H\psi : G \rightarrow H is a group homomorphism with K=ker⁑ψ,K =\ker \psi\text{,} then KK is normal in G.G\text{.} Let Ο•:Gβ†’G/K\phi: G \rightarrow G/K be the canonical homomorphism. Then there exists a unique isomorphism Ξ·:G/Kβ†’Οˆ(G)\eta: G/K \rightarrow \psi(G) such that ψ=Ξ·Ο•.\psi = \eta \phi\text{.}

Proof

We already know that KK is normal in G.G\text{.} Define Ξ·:G/Kβ†’Οˆ(G)\eta: G/K \rightarrow \psi(G) by Ξ·(gK)=ψ(g).\eta(gK) = \psi(g)\text{.} We first show that Ξ·\eta is a well-defined map. If g1K=g2K,g_1 K =g_2 K\text{,} then for some k∈K,k \in K\text{,} g1k=g2;g_1 k=g_2\text{;} consequently,

η(g1K)=ψ(g1)=ψ(g1)ψ(k)=ψ(g1k)=ψ(g2)=η(g2K).\begin{equation*} \eta(g_1 K) = \psi(g_1) = \psi(g_1) \psi(k) = \psi(g_1k) = \psi(g_2) = \eta(g_2 K). \end{equation*}

Thus, Ξ·\eta does not depend on the choice of coset representatives and the map Ξ·:G/Kβ†’Οˆ(G)\eta: G/K \rightarrow \psi(G) is uniquely defined since ψ=Ξ·Ο•.\psi = \eta \phi\text{.} We must also show that Ξ·\eta is a homomorphism, but

η(g1Kg2K)=η(g1g2K)=ψ(g1g2)=ψ(g1)ψ(g2)=η(g1K)η(g2K).\begin{align*} \eta( g_1K g_2K ) & = \eta(g_1 g_2K)\\ & = \psi(g_1 g_2)\\ & = \psi(g_1) \psi(g_2)\\ & = \eta( g_1K) \eta( g_2K ). \end{align*}

Clearly, Ξ·\eta is onto ψ(G).\psi( G)\text{.} To show that Ξ·\eta is one-to-one, suppose that Ξ·(g1K)=Ξ·(g2K).\eta(g_1 K) = \eta(g_2 K)\text{.} Then ψ(g1)=ψ(g2).\psi(g_1) = \psi(g_2)\text{.} This implies that ψ(g1βˆ’1g2)=e,\psi( g_1^{-1} g_2 ) = e\text{,} or g1βˆ’1g2g_1^{-1} g_2 is in the kernel of ψ;\psi\text{;} hence, g1βˆ’1g2K=K;g_1^{-1} g_2K = K\text{;} that is, g1K=g2K.g_1K =g_2K\text{.}

Mathematicians often use diagrams called to describe such theorems. The following diagram β€œcommutes” since ψ=Ξ·Ο•.\psi = \eta \phi\text{.}

Example11.11

Let GG be a cyclic group with generator g.g\text{.} Define a map Ο•:Zβ†’G\phi : {\mathbb Z} \rightarrow G by n↦gn.n \mapsto g^n\text{.} This map is a surjective homomorphism since

Ο•(m+n)=gm+n=gmgn=Ο•(m)Ο•(n).\begin{equation*} \phi( m + n) = g^{m+n} = g^m g^n = \phi(m) \phi(n). \end{equation*}

Clearly Ο•\phi is onto. If ∣g∣=m,|g| = m\text{,} then gm=e.g^m = e\text{.} Hence, ker⁑ϕ=mZ\ker \phi = m {\mathbb Z} and Z/ker⁑ϕ=Z/mZβ‰…G.{\mathbb Z} / \ker \phi = {\mathbb Z} / m {\mathbb Z} \cong G\text{.} On the other hand, if the order of gg is infinite, then ker⁑ϕ=0\ker \phi = 0 and Ο•\phi is an isomorphism of GG and Z.{\mathbb Z}\text{.} Hence, two cyclic groups are isomorphic exactly when they have the same order. Up to isomorphism, the only cyclic groups are Z{\mathbb Z} and Zn.{\mathbb Z}_n\text{.}

Theorem11.12Second Isomorphism Theorem

Let HH be a subgroup of a group GG (not necessarily normal in GG) and NN a normal subgroup of G.G\text{.} Then HNHN is a subgroup of G,G\text{,} H∩NH \cap N is a normal subgroup of H,H\text{,} and

H/H∩Nβ‰…HN/N.\begin{equation*} H / H \cap N \cong HN /N. \end{equation*}
Proof

We will first show that HN={hn:h∈H,n∈N}HN = \{ hn : h \in H, n \in N \} is a subgroup of G.G\text{.} Suppose that h1n1,h2n2∈HN.h_1 n_1, h_2 n_2 \in HN\text{.} Since NN is normal, (h2)βˆ’1n1h2∈N.(h_2)^{-1} n_1 h_2 \in N\text{.} So

(h1n1)(h2n2)=h1h2((h2)βˆ’1n1h2)n2\begin{equation*} (h_1 n_1)(h_2 n_2) = h_1 h_2 ( (h_2)^{-1} n_1 h_2 )n_2 \end{equation*}

is in HN.HN\text{.} The inverse of hn∈HNhn \in HN is in HNHN since

(hn)βˆ’1=nβˆ’1hβˆ’1=hβˆ’1(hnβˆ’1hβˆ’1).\begin{equation*} ( hn )^{-1} = n^{-1 } h^{-1} = h^{-1} (h n^{-1} h^{-1} ). \end{equation*}

Next, we prove that H∩NH \cap N is normal in H.H\text{.} Let h∈Hh \in H and n∈H∩N.n \in H \cap N\text{.} Then hβˆ’1nh∈Hh^{-1} n h \in H since each element is in H.H\text{.} Also, hβˆ’1nh∈Nh^{-1} n h \in N since NN is normal in G;G\text{;} therefore, hβˆ’1nh∈H∩N.h^{-1} n h \in H \cap N\text{.}

Now define a map Ο•\phi from HH to HN/NHN / N by h↦hN.h \mapsto h N\text{.} The map Ο•\phi is onto, since any coset hnN=hNh n N = h N is the image of hh in H.H\text{.} We also know that Ο•\phi is a homomorphism because

Ο•(hhβ€²)=hhβ€²N=hNhβ€²N=Ο•(h)Ο•(hβ€²).\begin{equation*} \phi( h h') = h h' N = h N h' N = \phi( h ) \phi( h'). \end{equation*}

By the First Isomorphism Theorem, the image of Ο•\phi is isomorphic to H/ker⁑ϕ;H / \ker \phi\text{;} that is,

HN/N=Ο•(H)β‰…H/ker⁑ϕ.\begin{equation*} HN/N = \phi(H) \cong H / \ker \phi. \end{equation*}

Since

ker⁑ϕ={h∈H:h∈N}=H∩N,\begin{equation*} \ker \phi = \{ h \in H : h \in N \} = H \cap N, \end{equation*}

HN/N=Ο•(H)β‰…H/H∩N.HN/N = \phi(H) \cong H / H \cap N\text{.}

Theorem11.13Correspondence Theorem

Let NN be a normal subgroup of a group G.G\text{.} Then H↦H/NH \mapsto H/N is a one-to-one correspondence between the set of subgroups HH containing NN and the set of subgroups of G/N.G/N\text{.} Furthermore, the normal subgroups of GG containing NN correspond to normal subgroups of G/N.G/N\text{.}

Proof

Let HH be a subgroup of GG containing N.N\text{.} Since NN is normal in H,H\text{,} H/NH/N makes sense. Let aNaN and bNbN be elements of H/N.H/N\text{.} Then (aN)(bβˆ’1N)=abβˆ’1N∈H/N;(aN)( b^{-1} N )= ab^{-1}N \in H/N\text{;} hence, H/NH/N is a subgroup ofG/N.G/N\text{.}

Let SS be a subgroup of G/N.G/N\text{.} This subgroup is a set of cosets of N.N\text{.} If H={g∈G:gN∈S},H= \{ g \in G : gN \in S \}\text{,} then for h1,h2∈H,h_1, h_2 \in H\text{,} we have that (h1N)(h2N)=h1h2N∈S(h_1 N)( h_2 N )= h_1 h_2 N \in S and h1βˆ’1N∈S.h_1^{-1} N \in S\text{.} Therefore, HH must be a subgroup of G.G\text{.} Clearly, HH contains N.N\text{.} Therefore, S=H/N.S = H / N\text{.} Consequently, the map H↦H/NH \mapsto H/N is onto.

Suppose that H1H_1 and H2H_2 are subgroups of GG containing NN such that H1/N=H2/N.H_1/N = H_2/N\text{.} If h1∈H1,h_1 \in H_1\text{,} then h1N∈H1/N.h_1 N \in H_1/N\text{.} Hence, h1N=h2NβŠ‚H2h_1 N = h_2 N \subset H_2 for some h2h_2 in H2.H_2\text{.} However, since NN is contained in H2,H_2\text{,} we know that h1∈H2h_1 \in H_2 or H1βŠ‚H2.H_1 \subset H_2\text{.} Similarly, H2βŠ‚H1.H_2 \subset H_1\text{.} Since H1=H2,H_1 = H_2\text{,} the map H↦H/NH \mapsto H/N is one-to-one.

Suppose that HH is normal in GG and NN is a subgroup of H.H\text{.} Then it is easy to verify that the map G/Nβ†’G/HG/N \rightarrow G/H defined by gN↦gHgN \mapsto gH is a homomorphism. The kernel of this homomorphism is H/N,H/N\text{,} which proves that H/NH/N is normal in G/N.G/N\text{.}

Conversely, suppose that H/NH/N is normal in G/N.G/N\text{.} The homomorphism given by

G→G/N→G/NH/N\begin{equation*} G \rightarrow G/N \rightarrow \frac{G/N}{H/N} \end{equation*}

has kernel H.H\text{.} Hence, HH must be normal in G.G\text{.}

Notice that in the course of the proof of TheoremΒ 11.13, we have also proved the following theorem.

Theorem11.14Third Isomorphism Theorem

Let GG be a group and NN and HH be normal subgroups of GG with NβŠ‚H.N \subset H\text{.} Then

G/H≅G/NH/N.\begin{equation*} G/H \cong \frac{G/N}{H/N}. \end{equation*}
Example11.15

By the Third Isomorphism Theorem,

Z/mZ≅(Z/mnZ)/(mZ/mnZ).\begin{equation*} {\mathbb Z} / m {\mathbb Z} \cong ({\mathbb Z}/ mn {\mathbb Z})/ (m {\mathbb Z}/ mn {\mathbb Z}). \end{equation*}

Since ∣Z/mnZ∣=mn| {\mathbb Z} / mn {\mathbb Z} | = mn and ∣Z/mZ∣=m,|{\mathbb Z} / m{\mathbb Z}| = m\text{,} we have ∣mZ/mnZ∣=n.| m {\mathbb Z} / mn {\mathbb Z}| = n\text{.}