Book a Demo!
CoCalc Logo Icon
StoreFeaturesDocsShareSupportNewsAboutPoliciesSign UpSign In
Download

πŸ“š The CoCalc Library - books, templates and other resources

132928 views
License: OTHER
Kernel:
%%html <link href="http://mathbook.pugetsound.edu/beta/mathbook-content.css" rel="stylesheet" type="text/css" /> <link href="https://aimath.org/mathbook/mathbook-add-on.css" rel="stylesheet" type="text/css" /> <style>.subtitle {font-size:medium; display:block}</style> <link href="https://fonts.googleapis.com/css?family=Open+Sans:400,400italic,600,600italic" rel="stylesheet" type="text/css" /> <link href="https://fonts.googleapis.com/css?family=Inconsolata:400,700&subset=latin,latin-ext" rel="stylesheet" type="text/css" /><!-- Hide this cell. --> <script> var cell = $(".container .cell").eq(0), ia = cell.find(".input_area") if (cell.find(".toggle-button").length == 0) { ia.after( $('<button class="toggle-button">Toggle hidden code</button>').click( function (){ ia.toggle() } ) ) ia.hide() } </script>

Important: to view this notebook properly you will need to execute the cell above, which assumes you have an Internet connection. It should already be selected, or place your cursor anywhere above to select. Then press the "Run" button in the menu bar above (the right-pointing arrowhead), or press Shift-Enter on your keyboard.

ParseError: KaTeX parse error: \newcommand{\lt} attempting to redefine \lt; use \renewcommand

Section16.1Rings

ΒΆ

A nonempty set RR is a if it has two closed binary operations, addition and multiplication, satisfying the following conditions.

  1. a+b=b+aa + b = b + a for a,b∈R.a, b \in R\text{.}

  2. (a+b)+c=a+(b+c)(a + b) + c = a + ( b + c) for a,b,c∈R.a, b, c \in R\text{.}

  3. There is an element 00 in RR such that a+0=aa + 0 = a for all a∈R.a \in R\text{.}

  4. For every element a∈R,a \in R\text{,} there exists an element βˆ’a-a in RR such that a+(βˆ’a)=0.a + (-a) = 0\text{.}

  5. (ab)c=a(bc)(ab) c = a ( b c) for a,b,c∈R.a, b, c \in R\text{.}

  6. For a,b,c∈R,a, b, c \in R\text{,}

    a(b+c)=ab+ac(a+b)c=ac+bc.\begin{align*} a( b + c)&= ab +ac\\ (a + b)c & = ac + bc. \end{align*}

This last condition, the distributive axiom, relates the binary operations of addition and multiplication. Notice that the first four axioms simply require that a ring be an abelian group under addition, so we could also have defined a ring to be an abelian group (R,+)(R, +) together with a second binary operation satisfying the fifth and sixth conditions given above.

If there is an element 1∈R1 \in R such that 1β‰ 01 \neq 0 and 1a=a1=a1a = a1 = a for each element a∈R,a \in R\text{,} we say that RR is a ring with or . A ring RR for which ab=baab = ba for all a,ba, b in RR is called a . A commutative ring RR with identity is called an if, for every a,b∈Ra, b \in R such that ab=0,ab = 0\text{,} either a=0a = 0 or b=0.b = 0\text{.} A is a ring R,R\text{,} with an identity, in which every nonzero element in RR is a ; that is, for each a∈Ra \in R with aβ‰ 0,a \neq 0\text{,} there exists a unique element aβˆ’1a^{-1} such that aβˆ’1a=aaβˆ’1=1.a^{-1} a = a a^{-1} = 1\text{.} A commutative division ring is called a . The relationship among rings, integral domains, division rings, and fields is shown in FigureΒ 16.1.

Figure16.1Types of rings
Example16.2

As we have mentioned previously, the integers form a ring. In fact, Z{\mathbb Z} is an integral domain. Certainly if ab=0a b = 0 for two integers aa and b,b\text{,} either a=0a=0 or b=0.b=0\text{.} However, Z{\mathbb Z} is not a field. There is no integer that is the multiplicative inverse of 2, since 1/21/2 is not an integer. The only integers with multiplicative inverses are 1 and βˆ’1.-1\text{.}

Example16.3

Under the ordinary operations of addition and multiplication, all of the familiar number systems are rings: the rationals, Q;{\mathbb Q}\text{;} the real numbers, R;{\mathbb R}\text{;} and the complex numbers, C.{\mathbb C}\text{.} Each of these rings is a field.

Example16.4

We can define the product of two elements aa and bb in Zn{\mathbb Z}_n by ab(modn).ab \pmod{n}\text{.} For instance, in Z12,{\mathbb Z}_{12}\text{,} 5β‹…7≑11(mod12).5 \cdot 7 \equiv 11 \pmod{12}\text{.} This product makes the abelian group Zn{\mathbb Z}_n into a ring. Certainly Zn{\mathbb Z}_n is a commutative ring; however, it may fail to be an integral domain. If we consider 3β‹…4≑0(mod12)3 \cdot 4 \equiv 0 \pmod{12} in Z12,{\mathbb Z}_{12}\text{,} it is easy to see that a product of two nonzero elements in the ring can be equal to zero.

A nonzero element aa in a ring RR is called a if there is a nonzero element bb in RR such that ab=0.ab = 0\text{.} In the previous example, 3 and 4 are zero divisors in Z12.{\mathbb Z}_{12}\text{.}

Example16.5

In calculus the continuous real-valued functions on an interval [a,b][a,b] form a commutative ring. We add or multiply two functions by adding or multiplying the values of the functions. If f(x)=x2f(x) = x^2 and g(x)=cos⁑x,g(x) = \cos x\text{,} then (f+g)(x)=f(x)+g(x)=x2+cos⁑x(f+g)(x) = f(x) + g(x) = x^2 + \cos x and (fg)(x)=f(x)g(x)=x2cos⁑x.(fg)(x) = f(x) g(x) = x^2 \cos x\text{.}

Example16.6

The 2×22 \times 2 matrices with entries in R{\mathbb R} form a ring under the usual operations of matrix addition and multiplication. This ring is noncommutative, since it is usually the case that AB≠BA.AB \neq BA\text{.} Also, notice that we can have AB=0AB = 0 when neither AA nor BB is zero.

Example16.7

For an example of a noncommutative division ring, let

1=(1001),i=(01βˆ’10),j=(0ii0),k=(i00βˆ’i),\begin{equation*} 1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad {\mathbf i} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad {\mathbf j} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad {\mathbf k} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \end{equation*}

where i2=βˆ’1.i^2 = -1\text{.} These elements satisfy the following relations:

i2=j2=k2=βˆ’1ij=kjk=iki=jji=βˆ’kkj=βˆ’iik=βˆ’j.\begin{align*} {\mathbf i}^2 = {\mathbf j}^2 & = {\mathbf k}^2 = -1\\ {\mathbf i} {\mathbf j} & = {\mathbf k} \\ {\mathbf j} {\mathbf k} & = {\mathbf i} \\ {\mathbf k} {\mathbf i} & = {\mathbf j} \\ {\mathbf j} {\mathbf i} & = - {\mathbf k} \\ {\mathbf k} {\mathbf j} & = - {\mathbf i} \\ {\mathbf i} {\mathbf k} & = - {\mathbf j}. \end{align*}

Let H{\mathbb H} consist of elements of the form a+bi+cj+dk,a + b {\mathbf i} + c {\mathbf j} +d {\mathbf k}\text{,} where a,b,c,da, b , c, d are real numbers. Equivalently, H{\mathbb H} can be considered to be the set of all 2Γ—22 \times 2 matrices of the form

(Ξ±Ξ²βˆ’Ξ²β€ΎΞ±β€Ύ),\begin{equation*} \begin{pmatrix} \alpha & \beta \\ -\overline{\beta} & \overline{\alpha } \end{pmatrix}, \end{equation*}

where Ξ±=a+di\alpha = a + di and Ξ²=b+ci\beta = b+ci are complex numbers. We can define addition and multiplication on H{\mathbb H} either by the usual matrix operations or in terms of the generators 1, i,{\mathbf i}\text{,} j,{\mathbf j}\text{,} and k:{\mathbf k}\text{:}

(a1+b1i+c1j+d1k)+(a2+b2i+c2j+d2k)=(a1+a2)+(b1+b2)i+(c1+c2)j+(d1+d2)k\begin{gather*} (a_1 + b_1 {\mathbf i} + c_1 {\mathbf j} +d_1 {\mathbf k} ) + ( a_2 + b_2 {\mathbf i} + c_2 {\mathbf j} +d_2 {\mathbf k} )\\ = (a_1 + a_2) + ( b_1 + b_2) {\mathbf i} + ( c_1 + c_2) \mathbf j + (d_1 + d_2) \mathbf k \end{gather*}

and

(a1+b1i+c1j+d1k)(a2+b2i+c2j+d2k)=Ξ±+Ξ²i+Ξ³j+Ξ΄k,\begin{equation*} (a_1 + b_1 {\mathbf i} + c_1 {\mathbf j} +d_1 {\mathbf k} ) ( a_2 + b_2 {\mathbf i} + c_2 {\mathbf j} +d_2 {\mathbf k} ) = \alpha + \beta {\mathbf i} + \gamma {\mathbf j} + \delta {\mathbf k}, \end{equation*}

where

Ξ±=a1a2βˆ’b1b2βˆ’c1c2βˆ’d1d2Ξ²=a1b2+a2b1+c1d2βˆ’d1c2Ξ³=a1c2βˆ’b1d2+c1a2+d1b2Ξ΄=a1d2+b1c2βˆ’c1b2+d1a2.\begin{align*} \alpha & = a_1 a_2 - b_1 b_2 - c_1 c_2 -d_1 d_2\\ \beta & = a_1 b_2 + a_2 b_1 + c_1 d_2 - d_1 c_2\\ \gamma & = a_1 c_2 - b_1 d_2 + c_1 a_2 + d_1 b_2\\ \delta & = a_1 d_2 + b_1 c_2 - c_1 b_2 + d_1 a_2. \end{align*}

Though multiplication looks complicated, it is actually a straightforward computation if we remember that we just add and multiply elements in H{\mathbb H} like polynomials and keep in mind the relationships between the generators i,{\mathbf i}\text{,} j,{\mathbf j}\text{,} and k.{\mathbf k}\text{.} The ring H{\mathbb H} is called the ring of .

To show that the quaternions are a division ring, we must be able to find an inverse for each nonzero element. Notice that

(a+bi+cj+dk)(aβˆ’biβˆ’cjβˆ’dk)=a2+b2+c2+d2.\begin{equation*} ( a + b {\mathbf i} + c {\mathbf j} +d {\mathbf k} )( a - b {\mathbf i} - c {\mathbf j} -d {\mathbf k} ) = a^2 + b^2 + c^2 + d^2. \end{equation*}

This element can be zero only if a,a\text{,} b,b\text{,} c,c\text{,} and dd are all zero. So if a+bi+cj+dk≠0,a + b {\mathbf i} + c {\mathbf j} +d {\mathbf k} \neq 0\text{,}

(a+bi+cj+dk)(aβˆ’biβˆ’cjβˆ’dka2+b2+c2+d2)=1.\begin{equation*} ( a + b {\mathbf i} + c {\mathbf j} +d {\mathbf k} )\left( \frac{a - b {\mathbf i} - c {\mathbf j} - d {\mathbf k} }{ a^2 + b^2 + c^2 + d^2 } \right) = 1. \end{equation*}
Proposition16.8

Let RR be a ring with a,b∈R.a, b \in R\text{.} Then

  1. a0=0a=0;a0 = 0a = 0\text{;}

  2. a(βˆ’b)=(βˆ’a)b=βˆ’ab;a(-b) = (-a)b = -ab\text{;}

  3. (βˆ’a)(βˆ’b)=ab.(-a)(-b) =ab\text{.}

Proof

To prove (1), observe that

a0=a(0+0)=a0+a0;\begin{equation*} a0 = a(0+0)= a0+ a0; \end{equation*}

hence, a0=0.a0=0\text{.} Similarly, 0a=0.0a = 0\text{.} For (2), we have ab+a(βˆ’b)=a(bβˆ’b)=a0=0;ab + a(-b) = a(b-b) = a0 = 0\text{;} consequently, βˆ’ab=a(βˆ’b).-ab = a(-b)\text{.} Similarly, βˆ’ab=(βˆ’a)b.-ab = (-a)b\text{.} Part (3) follows directly from (2) since (βˆ’a)(βˆ’b)=βˆ’(a(βˆ’b))=βˆ’(βˆ’ab)=ab.(-a)(-b) = -(a(- b)) = -(-ab) = ab\text{.}

Just as we have subgroups of groups, we have an analogous class of substructures for rings. A SS of a ring RR is a subset SS of RR such that SS is also a ring under the inherited operations from R.R\text{.}

Example16.9

The ring nZn {\mathbb Z} is a subring of Z.{\mathbb Z}\text{.} Notice that even though the original ring may have an identity, we do not require that its subring have an identity. We have the following chain of subrings:

ZβŠ‚QβŠ‚RβŠ‚C.\begin{equation*} {\mathbb Z} \subset {\mathbb Q} \subset {\mathbb R} \subset {\mathbb C}. \end{equation*}

The following proposition gives us some easy criteria for determining whether or not a subset of a ring is indeed a subring. (We will leave the proof of this proposition as an exercise.)

Proposition16.10

Let RR be a ring and SS a subset of R.R\text{.} Then SS is a subring of RR if and only if the following conditions are satisfied.

  1. Sβ‰ βˆ….S \neq \emptyset\text{.}

  2. rs∈Srs \in S for all r,s∈S.r, s \in S\text{.}

  3. rβˆ’s∈Sr-s \in S for all r,s∈S.r, s \in S\text{.}

Example16.11

Let R=M2(R)R ={\mathbb M}_2( {\mathbb R} ) be the ring of 2Γ—22 \times 2 matrices with entries in R.{\mathbb R}\text{.} If TT is the set of upper triangular matrices in R;R\text{;} i.e.,

T={(ab0c):a,b,c∈R},\begin{equation*} T = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} : a, b, c \in {\mathbb R} \right\}, \end{equation*}

then TT is a subring of R.R\text{.} If

A=(ab0c)andB=(aβ€²bβ€²0cβ€²)\begin{equation*} A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} \end{equation*}

are in T,T\text{,} then clearly Aβˆ’BA-B is also in T.T\text{.} Also,

AB=(aaβ€²abβ€²+bcβ€²0ccβ€²)\begin{equation*} AB = \begin{pmatrix} a a' & ab' + bc' \\ 0 & cc' \end{pmatrix} \end{equation*}

is in T.T\text{.}